Artigo Acesso aberto Revisado por pares

Changes in the Water Temperature of Rivers Impacted by the Urban Heat Island: Case Study of Suceava City

2020; Multidisciplinary Digital Publishing Institute; Volume: 12; Issue: 5 Linguagem: Inglês

10.3390/w12051343

ISSN

2073-4441

Autores

Andrei-Emil Briciu, Dumitru Mihăilă, Adrian Graur, Dinu Iulian Oprea, Alin Prisăcariu, Petruț–Ionel Bistricean,

Tópico(s)

Climate variability and models

Resumo

Cities alter the thermal regime of urban rivers in very variable ways which are not yet deciphered for the territory of Romania. The urban heat island of Suceava city was measured in 2019 and its impact on Suceava River was assessed using hourly and daily values from a network of 12 water and air monitoring stations. In 2019, Suceava River water temperature was 11.54 °C upstream of Suceava city (Mihoveni) and 11.97 °C downstream (Tişăuţi)—a 3.7% increase in the water temperature downstream. After the stream water passes through the city, the diurnal thermal profile of Suceava River water temperature shows steeper slopes and earlier moments of the maximum and minimum temperatures than upstream because of the urban heat island. In an average day, an increase of water temperature with a maximum of 0.99 °C occurred downstream, partly explained by the 2.46 °C corresponding difference between the urban floodplain and the surrounding area. The stream water diurnal cycle has been shifted towards a variation specific to that of the local air temperature. The heat exchange between Suceava River and Suceava city is bidirectional. The stream water diurnal thermal cycle is statistically more significant downstream due to the heat transfer from the city into the river. This transfer occurs partly through urban tributaries which are 1.94 °C warmer than Suceava River upstream of Suceava city. The wavelet coherence analyses and ANCOVA (analysis of covariance) prove that there are significant (0.95 confidence level) causal relationships between the changes in Suceava River water temperature downstream and the fluctuations of the urban air temperature. The complex bidirectional heat transfer and the changes in the diurnal thermal profiles are important to be analysed in other urban systems in order to decipher in more detail the observed causal relationships.

Referência(s)