Average Entropy of a Quantum Subsystem
1996; American Physical Society; Volume: 77; Issue: 1 Linguagem: Inglês
10.1103/physrevlett.77.1
ISSN1092-0145
Autores Tópico(s)Advanced Thermodynamics and Statistical Mechanics
ResumoIt was recently conjectured by D. Page that if a quantum system of Hilbert space dimension $\mathrm{nm}$ is in a random pure state then the average entropy of a subsystem of dimension $m$ where $m\ensuremath{\le}n$ is ${S}_{m,n}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\left(\ensuremath{\Sigma}{k\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}n+1}^{\mathrm{mn}}1/k\right)\ensuremath{-}(m\ensuremath{-}1)/2n$. In this Letter a simple proof of this conjecture is given.
Referência(s)