Compact Variable Gravity Compensation Mechanism With a Geometrically Optimized Lever for Maximizing Variable Ratio of Torque Generation
2020; Institute of Electrical and Electronics Engineers; Volume: 25; Issue: 4 Linguagem: Inglês
10.1109/tmech.2020.2998291
ISSN1941-014X
AutoresJehyeok Kim, Junyoung Moon, Jongwon Kim, Giuk Lee,
Tópico(s)Prosthetics and Rehabilitation Robotics
ResumoIn this article, we propose a compact variable gravity compensation (CVGC) mechanism with a geometrically optimized lever shape. The CVGC mechanism can be used to generate gravity compensation torque by employing a cam and lever mechanism and can also amplify the gravity compensation torque by varying the pivot point of the lever. Among these advantages, we aimed to maximize the variable ratio of torque generation with an optimized lever. First, the mechanism concept and details of the CVGC mechanism are explained. Next, the conceptual benefit of using a curved lever instead of the original lever is explained. Afterward, the modeling and mechanics of the testbed using a curved lever are presented for force analysis. Based on these mechanics and B-spline curve representation, the methodology for optimizing the curved lever and cam profile design is presented. Finally, the performance of variable gravity compensation using the optimized lever is verified through experiments that compare the designed and measured gravity compensation torque. As we had hoped, the verification test shows that using the optimized curved lever improves the variable ratio from 5.27 to 14.43.
Referência(s)