Artigo Acesso aberto Revisado por pares

Quick-start guide for first-principles modelling of point defects in crystalline materials

2020; IOP Publishing; Volume: 2; Issue: 3 Linguagem: Inglês

10.1088/2515-7655/aba081

ISSN

2515-7655

Autores

Sunghyun Kim, Samantha N. Hood, Ji‐Sang Park, Lucy D. Whalley, Aron Walsh,

Tópico(s)

Machine Learning in Materials Science

Resumo

Abstract Defects influence the properties and functionality of all crystalline materials. For instance, point defects participate in electronic (e.g. carrier generation and recombination) and optical (e.g. absorption and emission) processes critical to solar energy conversion. Solid-state diffusion, mediated by the transport of charged defects, is used for electrochemical energy storage. First-principles calculations of defects based on density functional theory have been widely used to complement, and even validate, experimental observations. In this ‘quick-start guide’, we discuss the best practice in how to calculate the formation energy of point defects in crystalline materials and analysis techniques appropriate to probe changes in structure and properties relevant across energy technologies.

Referência(s)