Artigo Acesso aberto Revisado por pares

Trajectory Analysis of a Sun-Facing Solar Sail with Optical Degradation

2020; American Institute of Aeronautics and Astronautics; Volume: 43; Issue: 9 Linguagem: Inglês

10.2514/1.g005214

ISSN

1533-3884

Autores

Marco Bassetto, Alessandro A. Quarta, Giovanni Mengali, Vittorio Cipolla,

Tópico(s)

Space Satellite Systems and Control

Resumo

No AccessEngineering NotesTrajectory Analysis of a Sun-Facing Solar Sail with Optical DegradationMarco Bassetto, Alessandro A. Quarta, Giovanni Mengali and Vittorio CipollaMarco BassettoUniversity of Pisa, I-56122 Pisa, Italy, Alessandro A. QuartaUniversity of Pisa, I-56122 Pisa, Italy, Giovanni MengaliUniversity of Pisa, I-56122 Pisa, Italy and Vittorio CipollaUniversity of Pisa, I-56122 Pisa, ItalyPublished Online:1 Jul 2020https://doi.org/10.2514/1.G005214SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Acord J. D. and Nicklas J. C., "Theoretical and Practical Aspects of Solar Pressure Attitude Control for Interplanetary Spacecraft," Guidance and Control, Vol. 13, Academic Press, New York, 1964, pp. 73–101. Google Scholar[2] Polyakhova E. N., Kosmicheskii Polet s Solnechnim Parusom (Cosmic Flight with Solar Sail), Nauka, Moscow, 1988. Google Scholar[3] Wright J. L., Space Sailing, Gordon and Breach Science, Philadelphia, 1992. Google Scholar[4] McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer-Praxis Series in Space Science and Technology, Springer-Verlag, Berlin, 1999. Google Scholar[5] Fu B., Sperber E. and Eke F., "Solar Sail Technology—A State of the Art Review," Progress in Aerospace Sciences, Vol. 86, Oct. 2016, pp. 1–19. https://doi.org/10.1016/j.paerosci.2016.07.001 CrossrefGoogle Scholar[6] Gong S. and Macdonald M., "Review on Solar Sail Technology," Astrodynamics, Vol. 3, No. 2, June 2019, pp. 93–125. https://doi.org/10.1007/s42064-019-0038-x CrossrefGoogle Scholar[7] Vulpetti G. and Scaglione S., "Aurora Project: Estimation of the Optical Sail Parameters," Acta Astronautica, Vol. 44, No. 2, Jan.–Feb. 1999, pp. 123–132. https://doi.org/10.1016/S0094-5765(99)00038-7 Google Scholar[8] Scaglione S. and Vulpetti G., "Aurora Project: Removal of Plastic Substrate to Obtain an All-Metal Solar Sail," Acta Astronautica, Vol. 44, No. 2, Jan.–Feb. 1999, pp. 147–150. https://doi.org/10.1016/S0094-5765(99)00041-7 Google Scholar[9] Khassanchine R. H., Timofeev A. N., Galygin A. N., Kostiuk V. I. and Tsvelev V. M., "Influence of Electron Radiation on Outgassing of Spacecraft Materials," Protection of Materials and Structures from the Space Environment, edited by Kleiman J. I., Springer, Dordrecht, The Netherlands, 2006, pp. 43–50. Google Scholar[10] Prosvirikov V. M., Grigorevskiy A. V., Kiseleva L. V., Zelenkevich A. P. and Tsvelev V. M., "Influence of Space Environment on Spectral Optical Properties of Thermal Control Coatings," Protection of Materials and Structures from the Space Environment, edited by Kleiman J. I., Springer, Dordrecht, The Netherlands, 2006, pp. 61–69. CrossrefGoogle Scholar[11] Edwards D. L., Semmel C., Hovater M., Nehls M., Gray P., Hubbs W. and Wertz G., "Status of Solar Sail Material Characterization at NASA's Marshall Space Flight Center," Protection of Materials and Structures from the Space Environment, edited by Kleiman J. I., Springer, Dordrecht, The Netherlands, 2006, pp. 233–246. Google Scholar[12] Kezerashvili R. Y. and Matloff G. L., "Microscopic Approach to Analyze Solar-Sail Space-Environment Effects," Advances in Space Research, Vol. 44, No. 7, Oct. 2009, pp. 859–869. https://doi.org/10.1016/j.asr.2009.05.002 CrossrefGoogle Scholar[13] Kezerashvili R. Y., Solar Sail: Materials and Space Environmental Effects, Springer, Berlin, 2014, pp. 573–592. Google Scholar[14] Sznajder M., Geppert U. and Dudek M. R., "Degradation of Metallic Surfaces Under Space Conditions, with Particular Emphasis on Hydrogen Recombination Processes," Advances in Space Research, Vol. 56, No. 1, July 2015, pp. 71–84. https://doi.org/10.1016/j.asr.2015.03.032 CrossrefGoogle Scholar[15] Sznajder M., Geppert U. and Marć M., "Degradation of Thin Solar-sail Membrane Films Under Interplanetary Medium," Proceedings of the Fourth International Symposium on Solar Sailing, Kyoto, Japan, Jan. 2017. Google Scholar[16] Sznajder M., Geppert U. and Dudek M. R., "Hydrogen Blistering Under Extreme Radiation Conditions," npj Materials Degradation, Vol. 2, No. 3, Jan. 2018. https://doi.org/10.1038/s41529-017-0024-z Google Scholar[17] Ancona E. and Kezerashvili R. Y., "Temperature Restrictions for Materials Used in Aerospace Industry for the Near-Sun Orbits," Acta Astronautica, Vol. 140, Nov. 2017, pp. 565–569. https://doi.org/10.1016/j.actaastro.2017.09.002 CrossrefGoogle Scholar[18] Pino T., Circi C. and Vulpetti G., "Wrinkling Analysis for Small Solar-Photon Sails: An Experimental and Analytic Approach for Trajectory Design," Advances in Space Research, Vol. 63, No. 11, June 2019, pp. 3675–3690. https://doi.org/10.1016/j.asr.2019.02.016 CrossrefGoogle Scholar[19] Rios-Reyes L. and Scheeres D. J., "Generalized Model for Solar Sails," Journal of Spacecraft and Rockets, Vol. 42, No. 1, Jan.–Feb. 2005, pp. 182–185. https://doi.org/10.2514/1.9054 LinkGoogle Scholar[20] Dachwald B., Baturkin V., Coverstone V. L., Diedrich B., Garbe G. P., Görlich M., Leipold M., Luratt F., Macdonald M., McInnes C. R., Mengali G., Quarta A. A., Rios-Reyes L., Scheeres D. J., Seboldt W. and Wie B., "Potential Effects of Optical Solar Sail Degradation on Trajectory Design," Proceedings of the AAS/AIAA Astrodynamics Conference, AAS Paper 05-413, Aug. 2005, pp. 2569–2591. Google Scholar[21] Dachwald B., Seboldt W., Macdonald M., Mengali G., Quarta A. A., McInnes C. R., Rios-Reyes L., Scheere D. J., Wie B., Görlich M., Lura F., Diedrich B., Baturkin V., Coverstone V. L., Leipold M. and Garbe G. P., "Potential Solar Sail Degradation Effects on Trajectory and Attitude Control," AIAA Guidance, Navigation, and Control Conference 2005, AIAA Paper 2005-6172, Aug. 2005. Google Scholar[22] Dachwald B., Mengali G., Quarta A. A. and Macdonald M., "Parametric Model and Optimal Control of Solar Sails with Optical Degradation," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, Sept. 2006, pp. 1170–1178. https://doi.org/10.2514/1.20313 LinkGoogle Scholar[23] Dachwald B., Macdonald M., McInnes C. R., Mengali G. and Quarta A. A., "Impact of Optical Degradation on Solar Sail Mission Performance," Journal of Spacecraft and Rockets, Vol. 44, No. 4, July 2007, pp. 740–749. https://doi.org/10.2514/1.21432 LinkGoogle Scholar[24] McInnes C. R., "Approximate Closed-Form Solution for Solar Sail Spiral Trajectories with Sail Degradation," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, Nov. 2014, pp. 2053–2057. https://doi.org/10.2514/1.G000225 LinkGoogle Scholar[25] McInnes C. R., "Passive Control of Displaced Solar Sail Orbits," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, Nov.–Dec. 1998, pp. 975–982. https://doi.org/10.2514/2.4334 LinkGoogle Scholar[26] Mengali G. and Quarta A. A., "Optimal Heliostationary Missions of High-Performance Sailcraft," Acta Astronautica, Vol. 60, Nos. 8–9, April–May 2007, pp. 676–683. https://doi.org/10.1016/j.actaastro.2006.07.018 CrossrefGoogle Scholar[27] McInnes C. R., "Artificial Lagrange Points for a Partially Reflecting Flat Solar Sail," Journal of Guidance, Control, and Dynamics, Vol. 22, No. 1, Jan.–Feb. 1999, pp. 185–187. https://doi.org/10.2514/2.7627 LinkGoogle Scholar[28] Aliasi G., Mengali G. and Quarta A. A., "Passive Control Feasibility of Collinear Equilibrium Points with Solar Balloons," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, Sept.–Oct. 2012, pp. 1657–1661. https://doi.org/10.2514/1.57393 LinkGoogle Scholar[29] Aliasi G., Mengali G. and Quarta A. A., "Artificial Lagrange Points for Solar Sail with Electrochromic Material Panels," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, Sept.–Oct. 2013, pp. 1544–1550. https://doi.org/10.2514/1.58167 LinkGoogle Scholar[30] Mengali G., Quarta A. A. and Denti E., "Optimal In-Orbit Repositioning of Sun-Pointing Smart Dust," Acta Astronautica, Vol. 154, Jan. 2019, pp. 278–285. https://doi.org/10.1016/j.actaastro.2018.03.036 Google Scholar[31] McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer-Praxis Series in Space Science and Technology, Springer-Verlag, Berlin, 1999, pp. 38–40. Google Scholar[32] Bürdet C. A., "Le Mouvement Keplerien et les Oscillateurs Harmoniques," Journal für die Reine und Angewandte Mathematik, Vol. 1969, No. 238, Jan. 1969, pp. 71–84. https://doi.org/10.1515/crll.1969.238.71 CrossrefGoogle Scholar[33] Ferrándiz J. M., "A General Canonical Transformation Increasing the Number of Variables with Application to the Two-Body Problem," Celestial Mechanics and Dynamical Astronomy, Vol. 41, Nos. 1–4, March 1987, pp. 343–357. https://doi.org/10.1007/BF01238770 CrossrefGoogle Scholar[34] Ferrándiz J. M., Sansaturio M. E. and Pojman J. R., "Increased Accuracy of Computations in the Main Satellite Problem Through Linearization Methods," Celestial Mechanics and Dynamical Astronomy, Vol. 53, No. 4, Dec. 1992, pp. 347–363. https://doi.org/10.1007/BF00051816 CrossrefGoogle Scholar[35] Fukushima T., "New Two-Body Regularization," Astronomical Journal, Vol. 133, No. 1, Jan. 2007, pp. 1–10. https://doi.org/10.1086/509606 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAnalytical solution to logarithmic spiral trajectories with circumferential thrust and mission applications18 May 2022 | Astrodynamics, Vol. 6, No. 4Trajectory Analysis of a Zero-Pitch-Angle E-Sail with Homotopy Perturbation TechniqueLorenzo Niccolai , Alessandro A. Quarta , Giovanni Mengali and Marco Bassetto 28 November 2022 | Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0High-performance solar sails for interstellar object rendezvousActa Astronautica, Vol. 200Optimal Circle-to-Ellipse Orbit Transfer for Sun-Facing E-Sail29 October 2022 | Aerospace, Vol. 9, No. 11Trajectory Approximation of a Solar Sail With Constant Pitch Angle and Optical DegradationIEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 4Optimal V∞ leveraging maneuvers using gray solar sailAerospace Science and Technology, Vol. 126Trajectory Analysis and Optimization of Hesperides Mission1 July 2022 | Universe, Vol. 8, No. 7Solar Sail Simplified Optimal Control Law for Reaching High Heliocentric Distances22 October 2021 | Aerotecnica Missili & Spazio, Vol. 100, No. 4Collinear artificial equilibrium point maintenance with a wrinkled solar sailAerospace Science and Technology, Vol. 119Trajectory approximation of a passively actuated solar balloon in near-Earth mission scenariosActa Astronautica, Vol. 188 What's Popular Volume 43, Number 9September 2020 CrossmarkInformationCopyright © 2020 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesAstronomyCelestial MechanicsJet EnginesKepler's Laws of Planetary MotionPlanetary Science and ExplorationPlanetsPropulsion and PowerSolar PhysicsSolar WindSpace MissionsSpace Science and TechnologySpacecraft Propulsion KeywordsSolar SailHeliocentric OrbitSpecific Angular MomentumOptical PropertiesPerihelionNeptuneSpace EnvironmentInterplanetary MissionMechanical PropertiesSpacecraft TrajectoriesPDF Received27 February 2020Accepted4 June 2020Published online1 July 2020

Referência(s)