Quantum Speedup for Aeroscience and Engineering
2020; American Institute of Aeronautics and Astronautics; Volume: 58; Issue: 8 Linguagem: Inglês
10.2514/1.j059183
ISSN1533-385X
AutoresPeyman Givi, Andrew J. Daley, Dimitri J. Mavriplis, Mujeeb R. Malik,
Tópico(s)Quantum and electron transport phenomena
ResumoNo AccessSurvey PapersQuantum Speedup for Aeroscience and EngineeringPeyman Givi, Andrew J. Daley, Dimitri Mavriplis and Mujeeb MalikPeyman GiviUniversity of Pittsburgh, Pittsburgh, Pennsylvania 15260, Andrew J. DaleyUniversity of Strathclyde, Glasgow, Scotland G1 1XQ, United Kingdom, Dimitri MavriplisUniversity of Wyoming, Laramie, Wyoming 82071 and Mujeeb MalikNASA Langley Research Center, Hampton, Virginia 23666Published Online:1 Jul 2020https://doi.org/10.2514/1.J059183SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Moore G. E., "Cramming More Components Onto Integrated Circuits," Electronics, Vol. 38, No. 8, 1965, pp. 1–4. Google Scholar[2] Simonite T., "Moore's Law Is Dead. Now What?" MIT Technology Review [online], May 2016, https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/ [retrieved 19 Oct. 2018]. Google Scholar[3] Siegelmann H. T., "Computation Beyond the Turing Limit," Science, Vol. 268, No. 5210, 1995, pp. 545–548. https://doi.org/10.1126/science.268.5210.545 Google Scholar[4] Lloyd S., "Universal Quantum Simulators," Science, Vol. 273, No. 5278, 1996, pp. 1073–1078. https://doi.org/10.1126/science.273.5278.1073 CrossrefGoogle Scholar[5] Simon D. R., "On the Power of Quantum Computation," Society for Industrial and Applied Mathematics Journal on Computing, Vol. 26, No. 5, 1997, pp. 1474–1483. Google Scholar[6] Milburn G., "Quantum Computation: Not the Next Step, But a Whole New Journey," Computing in Science and Engineering, Vol. 3, No. 6, 2001, pp. 87–93. Google Scholar[7] Dowling J. P. and Milburn G. J., "Quantum Technology: The Second Quantum Revolution," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 361, No. 1809, 2003, pp. 1655–1674. https://doi.org/10.1098/rsta.2003.1227 Google Scholar[8] Georgesc I. M., Ashhab S. and Nori F., "Quantum Simulation," Reviews of Modern Physics, Vol. 86, No. 1, 2014, pp. 153–185. https://doi.org/10.1103/RevModPhys.86.153 Google Scholar[9] Preskill J., "Quantum Computing in the NISQ Era and Beyond," Quantum, Vol. 2, Aug. 2018, p. 79. https://doi.org/10.22331/q Google Scholar[10] Albash T. and Lidar D. A., "Adiabatic Quantum Computation," Reviews of Modern Physics, Vol. 90, No. 1, 2018, Paper 015002. https://doi.org/10.1103/RevModPhys.90.015002 Google Scholar[11] Grumbling E. and Horowitz M. (eds.), Quantum Computing: Progress and Prospects, National Academies of Sciences, Engineering, and Medicine, Washington, D.C., 2019. https://doi.org/10.17226/25196 Google Scholar[12] Martonosi M. and Roetteler M., "Next Steps in Quantum Computing: Computer Science's Role," CoRR, 2019, http://arxiv.org/abs/1903.10541. Google Scholar[13] Cho A., "DOE Pushes for Useful Quantum Computing," Science, Vol. 359, No. 6372, 2018, pp. 141–142. https://doi.org/10.1126/science.359.6372.141 Google Scholar[14] Shor P. W., "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Soc., New York, 1994, pp. 124–134. https://doi.org/10.1109/SFCS.1994.365700 Google Scholar[15] Shor P. W., "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer," Society for Industrial and Applied Mathematics Review, Vol. 41, No. 2, 1999, pp. 303–332. https://doi.org/10.1137/S0036144598347011 Google Scholar[16] Grover L. K., "A Fast Quantum Mechanical Algorithm for Database Search," Proceedings of the Twenty-Eighth Annual Association for Computing Machinery Symposium on Theory of Computing, Assoc. for Computing Machinery, New York, 1996, pp. 212–219. https://doi.org/10.1145/237814.237866 Google Scholar[17] Kaye P., Laflamme R. and Mosca M., An Introduction to Quantum Computing, Oxford Univ. Press, New York, 2007. Google Scholar[18] Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, England, U.K., 2010. 10 Years Anniversary Edition. CrossrefGoogle Scholar[19] Boixo S., Isakov S. V., Smelyanskiy V. N., Babbush R., Ding N., Jiang Z., Bremner M. J., Martinis J. M. and Neven H., "Characterizing Quantum Supremacy in Near-Term Devices," Nature Physics, Vol. 14, No. 6, 2018, pp. 595–600. https://doi.org/10.1038/s41567-018-0124-x Google Scholar[20] Neill C., Roushan P., Kechedzhi K., Boixo S., Isakov S. V., Smelyanskiy V., Megrant A., Chiaro B., Dunsworth A., Arya K., Barends R., Burkett B., Chen Y., Chen Z., Fowler A., Foxen B., Giustina M., Graff R., Jeffrey E., Huang T., Kelly J., Klimov P., Lucero E., Mutus J., Neeley M., Quintana C., Sank D., Vainsencher A., Wenner J., White T. C., Neven H. and Martinis J. M., "A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits," Science, Vol. 360, No. 6385, 2018, pp. 195–199. https://doi.org/10.1126/science.aao4309 Google Scholar[21] Barends R., Shabani A., Lamata L., Kelly J., Mezzacapo A., Heras U. L., Babbush R., Fowler A. G., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., Jeffrey E., Lucero E., Megrant A., Mutus J. Y., Neeley M., Neill C., O'Malley P. J. J., Quintana C., Roushan P., Sank D., Vainsencher A., Wenner J., White T. C., Solano E., Neven H. and Martinis J. M., "Digitized Adiabatic Quantum Computing with a Superconducting Circuit," Nature, Vol. 534, No. 7606, 2016, pp. 222–226. https://doi.org/10.1038/nature17658 Google Scholar[22] Schoelkopf R., "Quantum Computing with Superconducting Circuits," 2016 Institute of Electrical and Electronics Engineers International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), Inst. of Electrical and Electronics Engineers, New York, 2016, pp. 43–44. https://doi.org/10.1109/iitc-amc.2016.7507674 Google Scholar[23] Ofek N., Petrenko A., Heeres R., Reinhold P., Leghtas Z., Vlastakis B., Liu Y., Frunzio L., Girvin S. M., Jiang L., Mirrahimi M., Devoret M. H. and Schoelkopf R. J., "Extending the Lifetime of a Quantum Bit with Error Correction in Superconducting Circuits," Nature, Vol. 536, No. 7617, 2016, pp. 441–445. https://doi.org/10.1038/nature18949 Google Scholar[24] Monroe C. R., Schoelkopf R. J. and Lukin M. D., "Quantum Connections," Scientific American, Vol. 314, No. 5, 2016, pp. 50–57. https://doi.org/10.1038/scientificamerican0516-50 Google Scholar[25] Wang C., Gao Y. Y., Reinhold P., Heeres R. W., Ofek N., Chou K., Axline C., Reagor M., Blumoff J., Sliwa K. M., Frunzio L., Girvin S. M., Jiang L., Mirrahimi M., Devoret M. H. and Schoelkopf R. J., "A Schrodinger Cat Living in Two Boxes," Science, Vol. 352, No. 6289, 2016, pp. 1087–1091. https://doi.org/10.1126/science.aaf2941 Google Scholar[26] DiVincenzo D. P., "Fault-Tolerant Architectures for Superconducting Qubits," Physica Scripta, Vol. 2009, No. T137, 2009, Paper 014020. https://doi.org/10.1088/0031-8949/2009/T137/014020 Google Scholar[27] Geller M., Pritchett E., Sornborger A. and Wilhelm F., "Quantum Computing with Superconductors I: Architectures," Manipulating Quantum Coherence in Solid State Systems, NATO Science Series, Vol. 244, edited by Flatté M. and Tifrea I., Springer, Dordrecht, The Netherlands, 2007, pp. 171–194. https://doi.org/10.1007/978-1-4020-6137-0 Google Scholar[28] Zhang J., Pagano G., Hess P. W., Kyprianidis A., Becker P., Kaplan H., Gorshkov A. V., Gong Z.-X. and Monroe C., "Observation of a Many-Body Dynamical Phase Transition with a 53-Qubit Quantum Simulator," Nature, Vol. 551, No. 7682, 2017, pp. 601–604. https://doi.org/10.1038/nature24654 Google Scholar[29] Linke N. M., Maslov D., Roetteler M., Debnath S., Figgatt C., Landsman K. A., Wright K. and Monroe C., "Experimental Comparison of Two Quantum Computing Architectures," Proceedings of the National Academy of Sciences, Vol. 114, No. 13, 2017, pp. 3305–3310. https://doi.org/10.1073/pnas.1618020114 Google Scholar[30] Debnath S., Linke N. M., Figgatt C., Landsman K. A., Wright K. and Monroe C., "Demonstration of a Small Programmable Quantum Computer with Atomic Qubits," Nature, Vol. 536, No. 7614, 2016, pp. 63–66. https://doi.org/10.1038/nature18648 CrossrefGoogle Scholar[31] Friis N., Marty O., Maier C., Hempel C., Holzäpfel M., Jurcevic P., Plenio M. B., Huber M., Roos C., Blatt R. and Lanyon B., "Observation of Entangled States of a Fully Controlled 20-Qubit System," Physical Review X, Vol. 8, No. 2, 2018, Paper 021012. https://doi.org/10.1103/PhysRevX.8.021012 Google Scholar[32] Monz T., Nigg D., Martinez E. A., Brandl M. F., Schindler P., Rines R., Wang S. X., Chuang I. L. and Blatt R., "Realization of a Scalable Shor Algorithm," Science, Vol. 351, No. 6277, 2016, pp. 1068–1070. https://doi.org/10.1126/science.aad9480 CrossrefGoogle Scholar[33] Leibfried D., Blatt R., Monroe C. and Wineland D., "Quantum Dynamics of Single Trapped Ions," Reviews of Modern Physics, Vol. 75, No. 1, 2003, pp. 281–324. https://doi.org/10.1103/RevModPhys.75.281 Google Scholar[34] Blatt R. and Wineland D., "Entangled States of Trapped Atomic Ions," Nature, Vol. 453, No. 7198, 2008, pp. 1008–1015. https://doi.org/10.1038/nature07125 CrossrefGoogle Scholar[35] Weiss D. S. and Saffman M., "Quantum Computing with Neutral Atoms," Physics Today, Vol. 70, No. 7, 2017, pp. 44–50. https://doi.org/10.1063/PT.3.3626 Google Scholar[36] Saffman M., "Quantum Computing with Atomic Qubits and Rydberg Interactions: Progress and Challenges," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, No. 20, 2016, Paper 202001. https://doi.org/10.1088/0953-4075/49/20/202001 Google Scholar[37] Xia T., Lichtman M., Maller K., Carr A., Piotrowicz M., Isenhower L. and Saffman M., "Randomized Benchmarking of Single-Qubit Gates in a 2D Array of Neutral-Atom Qubits," Physical Review Letters, Vol. 114, No. 10, 2015, Paper 100503. https://doi.org/10.1103/PhysRevLett.114.100503 Google Scholar[38] Barredo D., de Léséleuc S., Lienhard V., Lahaye T. and Browaeys A., "An Atom-by-Atom Assembler of Defect-Free Arbitrary Two-Dimensional Atomic Arrays," Science, Vol. 354, No. 6315, 2016, pp. 1021–1023. https://doi.org/10.1126/science.aah3778 Google Scholar[39] Labuhn H., Barredo D., Ravets S., de Léséleuc S., Macrì T., Lahaye T. and Browaeys A., "Tunable Two-Dimensional Arrays of Single Rydberg Atoms for Realizing Quantum Ising Models," Nature, Vol. 534, No. 7609, 2016, pp. 667–670. https://doi.org/10.1038/nature18274 Google Scholar[40] Hill C. D., Peretz E., Hile S. J., House M. G., Fuechsle M., Rogge S., Simmons M. Y. and Hollenberg L. C. L., "A Surface Code Quantum Computer in Silicon," Science Advances, Vol. 1, No. 9, 2015, Paper e1500707. https://doi.org/10.1126/sciadv.1500707 Google Scholar[41] Hanson R., Kouwenhoven L. P., Petta J. R., Tarucha S. and Vandersypen L. M. K., "Spins in Few-Electron Quantum Dots," Reviews of Modern Physics, Vol. 79, No. 4, 2007, pp. 1217–1265. https://doi.org/10.1103/RevModPhys.79.1217 Google Scholar[42] Awschalom D., Loss D. and Samarth N. (eds.), Semiconductor Spintronics and Quantum Computation, Springer, Berlin, 2002. Google Scholar[43] Weber J. R., Koehl W. F., Varley J. B., Janotti A., Buckley B. B., de Walle C. G. V. and Awschalom D. D., "Quantum Computing with Defects," Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 19, 2010, pp. 8513–8518. https://doi.org/10.1073/pnas.1003052107 Google Scholar[44] Prawer S. and Greentree A. D., "Diamond for Quantum Computing," Science, Vol. 320, No. 5883, 2008, pp. 1601–1602. https://doi.org/10.1126/science.1158340 Google Scholar[45] Kane B. E., "A Silicon-Based Nuclear Spin Quantum Computer," Nature, Vol. 393, No. 6681, 1998, pp. 133–137. https://doi.org/10.1038/30156 Google Scholar[46] Sparrow C., Martín-López E., Maraviglia N., Neville A., Harrold C., Carolan J., Joglekar Y. N., Hashimoto T., Matsuda N., O'Brien J. L., Tew D. P. and Laing A., "Simulating the Vibrational Quantum Dynamics of Molecules Using Photonics," Nature, Vol. 557, No. 7707, 2018, pp. 660–667. https://doi.org/10.1038/s41586-018-0152-9 Google Scholar[47] Harrow A. W., Hassidim A. and Lloyd S., "Quantum Algorithm for Linear Systems of Equations," Physical Review Letters, Vol. 103, No. 15, 2009, Paper 150502. https://doi.org/10.1103/PhysRevLett.103.150502 Google Scholar[48] Leyton S. K. and Osborne T. J., "A Quantum Algorithm to Solve Nonlinear Differential Equations," arXiv preprint arXiv:0812.4423, Dec. 2008. Google Scholar[49] Childs A., Kothari R. and Somma R., "Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision," SIAM Journal on Computing, Vol. 46, No. 6, 2017, pp. 1920–1950. https://doi.org/10.1137/16M1087072 Google Scholar[50] Subasi Y., Somma R. D. and Orsucci D., "Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing," Physical Review Letters, Vol. 122, No. 6, 2019, Paper 060504. https://doi.org/10.1103/PhysRevLett.122.060504 Google Scholar[51] Berry D. W., "High-Order Quantum Algorithm for Solving Linear Differential Equations," Journal of Physics A: Mathematical and Theoretical, Vol. 47, No. 10, 2014, Paper 105301. https://doi.org/10.1088/1751-8113/47/10/105301 Google Scholar[52] Berry D. W., Childs A. M., Ostrander A. and Wang G., "Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision," Communications in Mathematical Physics, Vol. 356, No. 3, 2017, pp. 1057–1081. https://doi.org/10.1007/s00220-017-3002-y Google Scholar[53] Clader B. D., Jacobs B. C. and Sprouse C. R., "Preconditioned Quantum Linear System Algorithm," Physical Review Letters, Vol. 110, No. 25, 2013, Paper 250504. https://doi.org/10.1103/PhysRevLett.110.250504 Google Scholar[54] Montanaro A. and Pallister S., "Quantum Algorithms and the Finite Element Method," Physical Review A, Vol. 93, No. 3, 2016, Paper 032324. https://doi.org/10.1103/PhysRevA.93.032324 Google Scholar[55] Costa P., Jordan S. and Ostrander A., "Quantum Algorithm for Simulating the Wave Equation," arXiv preprint arXiv:1711.05394, Nov. 2017. Google Scholar[56] Somma R. D., Boixo S., Barnum H. and Knill E., "Quantum Simulations of Classical Annealing Processes," Physical Review Letters, Vol. 101, No. 13, 2008, Paper 130504. https://doi.org/10.1103/PhysRevLett.101.130504 CrossrefGoogle Scholar[57] Papageorgiou A. and Traub J. F., "Quantum Algorithms for Continuous Problems and Their Applications," Advances in Chemical Physics, Wiley, New York, 2014, pp. 151–178. https://doi.org/10.1002/9781118742631.ch06 Google Scholar[58] Temme K., Osborne T. J., Vollbrecht K. G., Poulin D. and Verstraete F., "Quantum Metropolis Sampling," Nature, Vol. 471, No. 7336, 2011, pp. 87–90. https://doi.org/10.1038/nature09770 Google Scholar[59] Jordan S., "The Quantum Algorithm Zoo," Catalog of Quantum Algorithms [online], April 2011, https://math.nist.gov/quantum/zoo/ [retrieved Oct. 19 2018]. Google Scholar[60] Li J., Yang X., Peng X. and Sun C.-P., "Hybrid Quantum-Classical Approach to Quantum Optimal Control," Physical Review Letters, Vol. 118, No. 15, 2017, Paper 150503. https://doi.org/10.1103/PhysRevLett.118.150503 Google Scholar[61] McClean J. R., Romero J., Babbush R. and Aspuru-Guzik A., "The Theory of Variational Hybrid Quantum-Classical Algorithms," New Journal of Physics, Vol. 18, No. 2, 2016, Paper 023023. https://doi.org/10.1088/1367-2630/18/2/023023 Google Scholar[62] Bauer B., Wecker D., Millis A. J., Hastings M. B. and Troyer M., "Hybrid Quantum-Classical Approach to Correlated Materials," Physical Review X, Vol. 6, No. 3, 2016, Paper 031045. https://doi.org/10.1103/PhysRevX.6.031045 Google Scholar[63] Cirac J. I. and Zoller P., "Goals and Opportunities in Quantum Simulation," Nature Physics, Vol. 8, No. 4, 2012, pp. 264–266. https://doi.org/10.1038/nphys2275 Google Scholar[64] Kokail C., Maier C., van Bijnen R., Brydges T., Joshi M., Jurcevic P., Muschik C., Silvi P., Blatt R., Roos C. and Zoller P., "Self-Verifying Variational Quantum Simulation of Lattice Models," Nature, Vol. 569, No. 7756, 2019, pp. 355–360. https://doi.org/10.1038/s41586-019-1177-4 Google Scholar[65] Harris R., Sato Y., Berkley A. J., Reis M., Altomare F., Amin M. H., Boothby K., Bunyk P., Deng C., Enderud C., Huang S., Hoskinson E., Johnson M. W., Ladizinsky E., Ladizinsky N., Lanting T., Li R., Medina T., Molavi R., Neufeld R., Oh T., Pavlov I., Perminov I., Poulin-Lamarre G., Rich C., Smirnov A., Swenson L., Tsai N., Volkmann M., Whittaker J. and Yao J., "Phase Transitions in a Programmable Quantum Spin Glass Simulator," Science, Vol. 361, No. 6398, 2018, pp. 162–165. https://doi.org/10.1126/science.aat2025 Google Scholar[66] Ronnow T. F., Wang Z., Job J., Boixo S., Isakov S. V., Wecker D., Martinis J. M., Lidar D. A. and Troyer M., "Defining and Detecting Quantum Speedup," Science, Vol. 345, No. 6195, 2014, pp. 420–424. https://doi.org/10.1126/science.1252319 CrossrefGoogle Scholar[67] Figliola P. M., "Federal Quantum Information Science: An Overview," Congressional Reseach Service [online], July 2018, https://fas.org/sgp/crs/misc/IF10872.pdf [retrieved 19 Oct. 2018]. Google Scholar[68] Aspuru-Guzik A., van Dam W., Farhi E., Gaitan F., Humble T., Jordan S., Landahl A., Love P., Lucas R., Preskill J., Muller R., Svore K., Wiebe N., Williams C. and Susut C., "ASCR Report on Quantum Computing for Science," Quantum Computing Working Group Tech. Rept. SAND2015-5022R, Dept. of Energy, Washington, D.C., 2015. Google Scholar[69] Cramer C., "Quantum Testbed Stakeholder Workshop," Slides [online], April 2017, https://science.energy.gov//media/ascr/ascac/pdf/meetings/201704/ASCAC_QTSW.pdf [retrieved 19 Oct. 2018]. Google Scholar[70] Biswas R., Jiang Z., Kechezhi K., Knysh S., Mandrà S., O'Gorman B., Perdomo-Ortiz A., Petukhov A., Realpe-Gómez J., Rieffel E., Venturelli D., Vasko F. and Wang Z., "A NASA Perspective on Quantum Computing: Opportunities and Challenges," Parallel Computing, Vol. 64, May 2017, pp. 81–98. https://doi.org/10.1016/j.parco.2016.11.002 Google Scholar[71] Slotnick J., Khodadoust A., Alonso J., Darmofal D., Gropp W., Lurie E. and Mavriplis D., "CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences," NASA CR–2014-218178, March 2014. Google Scholar[72] Feynman R. P., "Simulating Physics with Computers," International Journal of Theoretical Physics, Vol. 21, Nos. 6–7, 1982, pp. 467–488. https://doi.org/10.1007/BF02650179 Google Scholar[73] Deutsch D., "Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer," Proceedings of the Royal Society of London A, Vol. 400, No. 1818, 1985, pp. 97–117. Google Scholar[74] Bernstein E. and Vazirani U., "Quantum Complexity Theory," Proceedings of the 25th Annual ACM Symposium on Theory of Computing, Assoc. of Computing Machimery, New York, 1993, pp. 11–20. Google Scholar[75] Davis M. (ed.), The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, New York, 1965. Google Scholar[76] Schumacher B., "Quantum Coding," Physical Review A, Vol. 51, No. 4, 1995, pp. 2738–2747. https://doi.org/10.1103/PhysRevA.51.2738 Google Scholar[77] Dirac P., "A New Notation for Quantum Mechanics," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 35, No. 3, 1939, pp. 416–418. https://doi.org/10.1017/S0305004100021162 CrossrefGoogle Scholar[78] Papageorgiou A. and Traub J. F., "Measures of Quantum Computing Speedup," Physical Review A, Vol. 88, No. 2, 2013, Paper 022316. https://doi.org/10.1103/PhysRevA.88.022316 Google Scholar[79] Preskill J., "Quantum Computing and the Entanglement Frontier," arXiv preprint arXiv:1203.5813v3, March 2012. Google Scholar[80] Fingerhuth M., Babej T. and Wittek P., "Open Source Software in Quantum Computing," PLOS ONE, Vol. 13, No. 12, 2018, Paper e0208561. https://doi.org/10.1371/journal.pone.0208561 Google Scholar[81] Chong F., Franklin D. and Martonosi M. R., "Programming Languages and Compiler Design for Realistic Quantum Hardware," Nature, Vol. 549, No. 7671, 2017, pp. 180–187. https://doi.org/10.1038/nature23459 Google Scholar[82] Lirakis C., "Quantum Computation," IBM-Q Group Lecture at Argonne Training Program on Extreme-Scale Computing (ATPESC) Workshop, Dept. of Energy, Chicago, 2017. Google Scholar[83] Cross A. W., Bishop L. S., Sheldon S., Nation P. D. and Gambetta J. M., "Validating Quantum Computers Using Randomized Model Circuits," Physical Review A, Vol. 100, No. 3, 2019, Paper 032328. https://doi.org/10.1103/PhysRevA.100.032328 Google Scholar[84] Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A., Smelyanskiy V. and Martinis J., "Commercialize Quantum Technologies in Five Years," Nature, Vol. 543, No. 7644, 2017, pp. 171–174. https://doi.org/10.1038/543171a Google Scholar[85] Chow J. and Gambetta J., "Quantum Takes Flight: Moving from Laboratory Demonstrations to Building Systems," 2020, https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/. Google Scholar[86] Arute F., Arya K., Babbush R., Bacon D., Bardin J. C., Barends R., Biswas R., Boixo S., Brandao F. G. S. L., Buell D. A., Burkett B., Chen Y., Chen Z., Chiaro B., Collins R., Courtney W., Dunsworth A., Farhi E., Foxen B., Fowler A., Gidney C., Giustina M., Graff R., Guerin K., Habegger S., Harrigan M. P., Hartmann M. J., Ho A., Hoffmann M., Huang T., Humble T. S., Isakov S. V., Jeffrey E., Jiang Z., Kafri D., Kechedzhi K., Kelly J., Klimov P. V., Knysh S., Korotkov A., Kostritsa F., Landhuis D., Lindmark M., Lucero E., Lyakh D., Mandrà S., McClean J. R., McEwen M., Megrant A., Mi X., Michielsen K., Mohseni M., Mutus J., Naaman O., Neeley M., Neill C., Niu M. Y., Ostby E., Petukhov A., Platt J. C., Quintana C., Rieffel E. G., Roushan P., Rubin N. C., Sank D., Satzinger K. J., Smelyanskiy V., Sung K. J., Trevithick M. D., Vainsencher A., Villalonga B., White T., Yao Z. J., Yeh P., Zalcman A., Neven H. and Martinis J. M., "Quantum Supremacy Using a Programmable Superconducting Processor," Nature, Vol. 574, No. 7779, 2019, pp. 505–510. https://doi.org/10.1038/s41586-019-1666-5 Google Scholar[87] Kim M., "Google's Quantum Computing Plans Threatened by IBM Curveball," New Scientist, 2017, https://www.newscientist.com/article/2151032-googles-quantum-computing-plans-threatened-by-ibm-curveball/. Google Scholar[88] Pednault E., Gunnels J. A., Nannicini G., Horesh L., Magerlein T., Solomonik E. and Wisnieff R., "Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits," arXiv preprint arXiv:1710.05867, Oct. 2017. Google Scholar[89] Greene T., "Google Reclaims Quantum Computer Crown with 72 Qubit Processor," Next Web [online], March 2018, https://tnw.to/2FmfU14 [retrieved 19 Oct. 2018]. Google Scholar[90] Conover E., "Google Moves Toward Quantum Supremacy with 72-Qubit Computer," Science News, Vol. 193, No. 6, 2018, p. 13, https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer. Google Scholar[91] Otterbach J., Manenti R., Alidoust N., Bestwick A., Block M., Bloom B., Caldwell S., Didier N., Fried E. S., Hong S. and et al., "Unsupervised Machine Learning on a Hybrid Quantum Computer," arXiv preprint arXiv:1712.05771, Dec. 2017. Google Scholar[92] Knapp A. and Konrad A., "Rigetti Computing Takes Small Step Toward Cloud Services in Big Leap for Quantum Computing," Forbes [online], Sept. 2018, https://www.forbes.com/sites/alexknapp/2018/09/07/rigetti-computing-takes-small-step-toward-cloud-services-in-big-leap-for-quantum-computing/#7ba6a7076503 [retrieved 19 Oct. 2018]. Google Scholar[93] Levine H., Keesling A., Omran A., Bernien H., Schwartz S., Zibrov A. S., Endres M., Greiner M., Vuletic V. and Lukin M. D., "High-Fidelity Control and Entanglement of Rydberg Atom Qubits," Physical Review Letters, Vol. 121, Sept. 2018, Paper 123603, http://arxiv.org/abs/1806.04682. Google Scholar[94] Childs A. M., Maslov D., Nam Y., Ross N. J. and Su Y., "Toward the First Quantum Simulation with Quantum Speedup," Proceedings of the National Academy of Sciences, Vol. 115, No. 38, 2018, pp. 9456–9461. https://doi.org/10.1073/pnas.1801723115 Google Scholar[95] Keyes D., McInnes L., Woodward C., Gropp W., Myra E., Pernice M., Bell J., Brown J., Clo A., Connors J., Constantinescu E., Estep D., Evans K., Farhat C., Hakim A., Hammond G., Hansen G., Hill J., Isaac T., Jiao X., Jordan K., Kaushik D., Kaxiras E., Koniges A., Lee K., Lott A., Lu Q., Magerlein J., Maxwell R., McCourt M., Mehl M., Pawlowski R., Randles A., Reynolds D., Rivière B., Rüde U., Scheibe T., Shadid J., Sheehan B., Shephard M., Siegel A., Smith B., Tang X., Wilson C. and Wohlmuth B., "Multiphysics Simulations: Challenges and Opportunities," International Journal of High Performance Computing Applications, Vol. 27, No. 1, 2013, pp. 4–83. https://doi.org/10.1177/1094342012468181 CrossrefGoogle Scholar[96] Lucas A., "Ising Formulations of Many NP Problems," Frontiers in Physics, Vol. 2, Feb. 2014, pp. 1–15. https://doi.org/10.3389/fphy.2014.00005 Google Scholar[97] Isakov S. V., Zintchenko I. N., Ronnow T. F. and Troyer M., "Optimised Simulated Annealing for Ising Spin Glasses," Computer Physics Communications, Vol. 192, July 2015, pp. 265–271. https://doi.org/10.1016/j.cpc.2015.02.015 Google Scholar[98] Scherer A., Valiron B., Mau S.-C., Alexander S., van den Berg E. and Chapuran T. E., "Concrete Resource Analysis of the Quantum Linear-System Algorithm Used to Compute the Electromagnetic Scattering Cross Section of a 2d Target," Quantum Information Processing, Vol. 16, No. 3, 2017, pp. 1–65. https://doi.org/10.1007/s11128-016-1495-5 Google Scholar[99] Peruzzo A., McClean J., Shadbolt P., Yung M.-H., Zhou X.-Q., Love P. J., Aspuru-Guzik A. and O'Brien J. L., "A Variational Eigenvalue Solver on a Quantum Processor," Nature Communications, Vol. 5, No. 1, 2014, p. 4213. https://doi.org/10.1038/ncomms5213 Google Scholar[100] Wen J., Kong X., Wei S., Wang B., Xin T. and Long G., "Experimental Realization of Quantum Algorithms for a Linear System Inspired by Adiabatic Quantum Computing," Physical Review A, Vol. 99, No. 1, 2019, Paper 012320. https://doi.org/10.1103/PhysRevA.99.012320 Google Scholar[101] Knill E., Ortiz G. and Somma R. D., "Optimal Quantum Measurements of Expectation Values of Observables," Physical Review A, Vol. 75, No. 1, 2007, Paper 012328. https://doi.org/10.1103/PhysRevA.75.012328 CrossrefGoogle Scholar[102] Berman G. P., Ezhov A. A., Kamenev D. I. and Yepez J., "Simulation of the Diffusion Equation on a Type-II Quantum Computer," Physical Review A, Vol. 66, No. 1, 2002, Paper 012310. https://doi.org/10.1103/PhysRevA.66.012310 Google Scholar[103] Chen Z., Yepez J. and Cory D. G., "Simulation of the Burgers Equation by NMR Quantum-information Processing," Physical Review A, Vol. 74, No. 4, 2006, Paper 042321. https://doi.org/10.1103/physreva.74.042321 Google Scholar[104] Steijl R. and Barakos G. N., "Parallel Evaluation of Quantum Algorithms for Computational Fluid Dynamics," Computers and Fluids, Vol. 173, Sept. 2018, pp. 22–28. https://doi.org/10.1016/j.compfluid.2018.03.080 CrossrefGoogle Scholar[105] Steijl R., "Quantum Algorithms for Fluid Simulations," Quantum Dynamics and Computation, edited by Stavrou V. N., IntechOpen, 2019, Glasgow, U.K., pp. 1–15, http://eprints.gla.ac.uk/187721/, a part of the simulation results presented were obtained using the EPSRC-funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk), EPSRC grant no. EP/K000586/1. Google Scholar[106] Lubasch M., Moinier P. and Jaksch D., "Multigrid Renormalization," Journal of Computational Physics, Vol. 372, Nov. 2018, pp. 587–602. https://doi.org/10.1016/j.jcp.2018.06.065 Google Scholar[107] Orús R., "A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States," Annals of Physics, Vol. 349, Oct. 2014, pp. 117–158. https://doi.org/10.1016/j.aop.2014.06.013 Google Scholar[108] Hastings M. B., "An Area Law for One-Dimensional Quantum Systems," Journal of Statistical Mechanics: Theory and Experiment, Vol. 2007, No. 8, 2007, Paper P08024. https://doi.org/10.1088/1742-5468/2007/08/P08024 Google Scholar[109] Lubasch M., Joo J., Moinier P., Kiffner M. and Jaksch D., "Variational Quantum Algorithms for Nonlinear Problems," Physical Review A, Vol. 101, No. 1, 2020, Paper 010301. https://doi.org/10.1103/PhysRevA.101.010301 Google Scholar[110] Al-Assam S., Clark S. R. and Jaksch D., "The Tensor Network Theory Library," Journal of Statistical Mechanics: Theory and Experiment, Vol. 2017, No. 9, 2017, Paper 093102. https://doi.org/10.1088/1742-5468/aa7df3 Google Scholar[111] Schollwöck U., "The Density-Matrix Renormalization Group in the Age of Matrix Product States," Annals of Physics, Vol. 326, No. 1, 2011, pp. 96–192. https://doi.org/10.1016/j.aop.2010.09.012 Google Scholar[112] Xu G., Daley A. J., Givi P. and Somma R. D., "Turbulent Mixing Simulation via a Quantum Algorithm," AIAA Journal, Vol. 56, No. 2, 2018, pp. 687–699. https://doi.org/10.2514/1.J055896 LinkGoogle Scholar[113] Xu G., Daley A. J., Givi P. and Somma R. D., "Quantum Algorithm for the Computation of the Reactant Conversion Rate in Homogeneous Turbulence," Combustion Theory and Modelling, Vol. 23, No. 6, 2019, pp. 1090–1104. https://doi.org/10.1080/13647830.2019.1626025 CrossrefGoogle Scholar[114] Pope S. B., Turbulent Flows, Cambridge Univ. Press, Cambridge, England, U.K., 2000. CrossrefGoogle Scholar[115] Givi P., "Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion," AIAA Journal, Vol. 44, No. 1, 2006, pp. 16–23. https://doi.org/10.2514/1.15514 LinkGoogle Scholar[116] Livescu D., Nouri A. G., Battaglia F. and Givi P. (eds.), Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy and Flight, Springer, Berlin, 2020. https://doi.org/10.1007/978-981-15-2643-5 Google Scholar Previous article FiguresReferencesRelatedDetailsCited byApplication of a variational hybrid quantum-classical algorithm to heat conduction equation and analysis of time complexityPhysics of Fluids, Vol. 34, No. 11Quantum Computing and Simulations for Energy Applications: Review and Perspective25 January 2022 | ACS Engineering Au, Vol. 2, No. 3AI Aero Science Model To Predict Security And To Improve The Fault Space SystemMachine learning and quantum computing for reactive turbulence modeling and simulationMechanics Research Communications, Vol. 116Edward E. O'Brien contributions to reactive-flow turbulencePhysics of Fluids, Vol. 33, No. 8Quantum Sensing for Energy Applications: Review and Perspective15 June 2021 | Advanced Quantum Technologies, Vol. 8Numerical Simulation of Ammonothermal Crystal Growth of GaN—Current State, Challenges, and Prospects30 March 2021 | Crystals, Vol. 11, No. 4QSOC: Quantum Service-Oriented Computing26 September 2021 What's Popular Volume 58, Number 8August 2020 CrossmarkInformationThis material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerothermodynamicsComputational Fluid DynamicsComputing and InformaticsComputing, Information, and CommunicationConservation of Momentum EquationsEquations of Fluid DynamicsFluid DynamicsMonte Carlo MethodNumerical AnalysisThermodynamicsThermophysics and Heat TransferTurbulenceTurbulence ModelsVortex Dynamics KeywordsHigh Performance ComputingLarge Eddy SimulationNASA Langley Research CenterComputational AerodynamicsMachine LearningLos Alamos National LaboratoriesAnnealingNational Institute of Standards and TechnologyReynolds Averaged Navier StokesSupercomputersAcknowledgmentsThe work of the first, third, and fourth authors was sponsored by NASA Transformational Tools and Technologies Project under the Transformative Aeronautics Concepts Program. The work of the second author is sponsored by Engineering and Physical Sciences Research Council Grant No. EP/K000586/1. We are indebted to Andrew Childs, Michael Hatridge, Dieter Jaksch, Stephen Jordan, Jeremy Levy, Masoud Mohseni, Pedram Roshan, and Rolando Somma for very useful comments, discussions, and input to this survey.PDF Received23 October 2019Accepted23 March 2020Published online1 July 2020
Referência(s)