Montelukast drug activity and potential against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)
2020; Wiley; Volume: 93; Issue: 1 Linguagem: Inglês
10.1002/jmv.26299
ISSN1096-9071
AutoresDennis C. Copertino, Rodrigo R. R. Duarte, Timothy R. Powell, Miguel de Mulder Rougvie, Douglas F. Nixon,
Tópico(s)Synthesis and biological activity
ResumoJournal of Medical VirologyVolume 93, Issue 1 p. 187-189 LETTER TO THE EDITOR Montelukast drug activity and potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Dennis C. Copertino, Dennis C. Copertino orcid.org/0000-0002-3217-4713 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorRodrigo R. R. Duarte, Rodrigo R. R. Duarte orcid.org/0000-0002-7666-9005 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorTimothy R. Powell, Timothy R. Powell orcid.org/0000-0001-9891-4895 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorMiguel de Mulder Rougvie, Miguel de Mulder Rougvie orcid.org/0000-0002-8026-7076 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorDouglas F. Nixon, Corresponding Author Douglas F. Nixon [email protected] orcid.org/0000-0002-2801-1786 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York Correspondence Douglas F. Nixon, Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, Belfer Research Building, Room 530, 413 E. 69th St, New York, NY 10021. Email: [email protected]Search for more papers by this author Dennis C. Copertino, Dennis C. Copertino orcid.org/0000-0002-3217-4713 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorRodrigo R. R. Duarte, Rodrigo R. R. Duarte orcid.org/0000-0002-7666-9005 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorTimothy R. Powell, Timothy R. Powell orcid.org/0000-0001-9891-4895 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorMiguel de Mulder Rougvie, Miguel de Mulder Rougvie orcid.org/0000-0002-8026-7076 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New YorkSearch for more papers by this authorDouglas F. Nixon, Corresponding Author Douglas F. Nixon [email protected] orcid.org/0000-0002-2801-1786 Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York Correspondence Douglas F. Nixon, Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, Belfer Research Building, Room 530, 413 E. 69th St, New York, NY 10021. Email: [email protected]Search for more papers by this author First published: 13 July 2020 https://doi.org/10.1002/jmv.26299Citations: 17Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. REFERENCES 1Duarte RRR, Copertino DC Jr., Iñiguez LP, Marston JL, Nixon DF, Powell TR. Repurposing FDA-approved drugs for COVID-19 using a data-driven approach. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.12148764.v1 Google Scholar 2Aiello T. (2020). Though not FDA approved, off-label singulair showing promise as coronavirus treatment, say doctors. In: CBS New York. https://newyork.cbslocal.com/2020/04/22/coronavirus-covid-19-singulair-montelukast/ Google Scholar 3Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med Hypotheses. 2020; 143:109883. https://doi.org/10.1016/j.mehy.2020.109883 10.1016/j.mehy.2020.109883 CASPubMedWeb of Science®Google Scholar 4Chen Y, Li Y, Wang X, Zou P. Montelukast, an anti-asthmatic drug, inhibits Zika virus infection by disrupting viral integrity. Front Microbiol. 2019; 10: 3079. https://doi.org/10.3389/fmicb.2019.03079 10.3389/fmicb.2019.03079 PubMedWeb of Science®Google Scholar 5Lin YC, Huang MY, Lee MS, et al. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages. J Microbiol Immunol Infect. 2018; 51(1): 18-26. https://doi.org/10.1016/j.jmii.2016.04.005 10.1016/j.jmii.2016.04.005 CASPubMedGoogle Scholar 6Cardani A, Boulton A, Kim TS, Braciale TJ. Alveolar macrophages prevent lethal influenza pneumonia by inhibiting infection of type-1 alveolar epithelial cells. PLoS Pathog. 2017; 13(1):e1006140. https://doi.org/10.1371/journal.ppat.1006140 10.1371/journal.ppat.1006140 PubMedWeb of Science®Google Scholar 7Coskun AK, Yigiter M, Oral A, et al. The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. Sci World J. 2011; 11: 1341-1356. https://doi.org/10.1100/tsw.2011.122 10.1100/tsw.2011.122 CASWeb of Science®Google Scholar 8Cikler E, Ersoy Y, Cetinel S, Ercan F. The leukotriene d4 receptor antagonist, montelukast, inhibits mast cell degranulation in the dermis induced by water avoidance stress. Acta Histochem. 2009; 111(2): 112-118. https://doi.org/10.1016/j.acthis.2008.04.006 10.1016/j.acthis.2008.04.006 CASPubMedWeb of Science®Google Scholar 9Korb O, Stutzle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model. 2009; 49(1): 84-96. https://doi.org/10.1021/ci800298z 10.1021/ci800298z CASPubMedWeb of Science®Google Scholar 10Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020; 368: 409-412. https://doi.org/10.1126/science.abb3405 10.1126/science.abb3405 CASPubMedWeb of Science®Google Scholar 11Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368: 779-782. https://doi.org/10.1126/science.abb7498 10.1126/science.abb7498 CASPubMedWeb of Science®Google Scholar 12Douguet D, Munier-Lehmann H, Labesse G, Pochet S. LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem. 2005; 48(7): 2457-2468. https://doi.org/10.1021/jm0492296 10.1021/jm0492296 CASPubMedWeb of Science®Google Scholar 13Copertino DC Jr., Lima B, Duarte R, et al. Antiretroviral drug activity and potential for pre-exposure prophylaxis against COVID-19 and HIV infection. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.12250199.v1 Google Scholar Citing Literature Volume93, Issue1Special Issue on New coronavirus (2019‐nCoV or SARS‐CoV‐2) and the outbreak of the respiratory illness (COVID‐19): Part‐VIIIJanuary 2021Pages 187-189 ReferencesRelatedInformation
Referência(s)