Artigo Acesso aberto Revisado por pares

Structural signatures in EPR3 define a unique class of plant carbohydrate receptors

2020; Nature Portfolio; Volume: 11; Issue: 1 Linguagem: Inglês

10.1038/s41467-020-17568-9

ISSN

2041-1723

Autores

Jaslyn E. M. M. Wong, Kira Gysel, T. Birkefeldt, Maria Vinther, Artur Muszyński, Parastoo Azadi, Nick S. Laursen, John T. Sullivan, Clive W. Ronson, Jens Stougaard, Kasper R. Andersen,

Tópico(s)

Carbohydrate Chemistry and Synthesis

Resumo

Abstract Receptor-mediated perception of surface-exposed carbohydrates like lipo- and exo-polysaccharides (EPS) is important for non-self recognition and responses to microbial associated molecular patterns in mammals and plants. In legumes, EPS are monitored and can either block or promote symbiosis with rhizobia depending on their molecular composition. To establish a deeper understanding of receptors involved in EPS recognition, we determined the structure of the Lotus japonicus ( Lotus ) exopolysaccharide receptor 3 (EPR3) ectodomain. EPR3 forms a compact structure built of three putative carbohydrate-binding modules (M1, M2 and LysM3). M1 and M2 have unique βαββ and βαβ folds that have not previously been observed in carbohydrate binding proteins, while LysM3 has a canonical βααβ fold. We demonstrate that this configuration is a structural signature for a ubiquitous class of receptors in the plant kingdom. We show that EPR3 is promiscuous, suggesting that plants can monitor complex microbial communities though this class of receptors.

Referência(s)