Pest survey card on flavescence dorée phytoplasma and its vector Scaphoideus titanus
2020; European Food Safety Authority; Volume: 17; Issue: 8 Linguagem: Inglês
10.2903/sp.efsa.2020.en-1909
ISSN2397-8325
AutoresSara Tramontini, Alice Delbianco, Sybren Vos,
Tópico(s)Cocoa and Sweet Potato Agronomy
ResumoEFSA Supporting PublicationsVolume 17, Issue 8 1909E Pest survey cardOpen Access Pest survey card on flavescence dorée phytoplasma and its vector Scaphoideus titanus European Food Safety Authority (EFSA), Corresponding Author European Food Safety Authority (EFSA) ALPHA@efsa.europa.eu Correspondence: ALPHA@efsa.europa.euSearch for more papers by this authorSara Tramontini, Sara TramontiniSearch for more papers by this authorAlice Delbianco, Alice DelbiancoSearch for more papers by this authorSybren Vos, Sybren VosSearch for more papers by this author European Food Safety Authority (EFSA), Corresponding Author European Food Safety Authority (EFSA) ALPHA@efsa.europa.eu Correspondence: ALPHA@efsa.europa.euSearch for more papers by this authorSara Tramontini, Sara TramontiniSearch for more papers by this authorAlice Delbianco, Alice DelbiancoSearch for more papers by this authorSybren Vos, Sybren VosSearch for more papers by this author First published: 10 August 2020 https://doi.org/10.2903/sp.efsa.2020.EN-1909 The updates of this document will be found in the Plant Pests Story Maps Gallery Requestor: European Commission Question number: EFSA-Q-2019-00279 and EFSA-Q-2019-00280 Amendment: An editorial correction was carried out, without materially affecting the contents or outcome of this scientific output: the two pictures on Fig. 4 have been inverted. To avoid confusion, the original version of the output has been removed from the EFSA Journal, but is available on request, as is a version showing all the changes made. AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract This pest survey card was prepared in the context of the EFSA mandate on plant pest surveillance (M2017-0137) at the request of the European Commission. Its purpose is to guide the Member States in preparing data and information for Flavescence dorée phytoplasma (FDp) and its vector Scaphoideus titanus that are required to design statistically sound and risk-based surveys, in line with current international standards. Flavescence dorée phytoplasmais a Union quarantine pest known to occur only in Europe, whereas its main vector S. titanus is a monophagous leaf hopper that has been introduced into the EU and is not regulatedin the EU. Both FDp and S. titanus are currently present in most of the main grape-growing EU Member States. The alternative hosts and other putative vectors of FDp play a secondary role in the epidemics. Spread of FDp in the EU can occur mainly through the internal movement of plants for planting of grapevine and the spread of infected vectors. Detection surveys for both FDp and S. titanusshould focus on commercial and productive vineyards and nurseries, wherever present in the EU, while in the event of an outbreak, delimiting surveys should extend to the wild and American Vitis spp. plants that can be found in abandoned vineyards, in the wild or grown in backyards and gardens, and that can have a crucial role in primary infections. IfS. titanus is present in an FDp outbreak area, the delimiting survey could be extended to occasional vectors of FDp and alternative hosts in order to also consider the spread of FDp from those reservoirs. Visual inspections are effective for identifying the vector but not for FDp, which requires confirmation by molecular methods. References Albetis J, Duthoit S, Guttler F, Jacquin A, Goulard M, Poilvé H, Féret J-B and Dedieu G, 2017. Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sensing, 9(4), 308. Albetis J, Jacquin A, Goulard M, Poilvé H, Rousseau J, Clenet H, Dedieu G and Duthoit S, 2019. On the potentiality of UAV multispectral imagery to detect Flavescence dorée and grapevine trunk diseases. Remote Sensing, 11, 23. Alma A, Lessio F, Gonella E and Picciau L, 2016. Attuali conoscenze su Scaphoideus titanus. Vitenda, 21, 66– 75. Angelini E, Clair D, Borgo M, Bertaccini A and Boudon-Padieu E, 2001. Flavescence dorée in France and Italy-Occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis, 40(2), 79– 86. Angelini E, Bianchi GL, Filippin L, Morassutti C and Borgo M, 2007. A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. Journal of Microbiological methods, 68(3), 613– 622. Angelini E, Constable F, Duduk B, Fiore N, Quaglino F and Bertaccini A, 2018. Grapevine Phytoplasmas. Phytoplasmas: Plant Pathogenic Bacteria- I, 123– 151. doi:10.1007/978-981-130119-3_5 Bagnoli B and Gargani E, 2011. Survey on Scaphoideus titanus egg distribution on grapevine. IOBC/WPRS Bulletin, 67, 233– 237. Beanland L, Noble R and Wolf TK, 2006. Spatial and temporal distribution of North American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environmental Entomology, 35, 332– 344. CABI (Centre for Agriculture and Bioscience International), 2019. Clematis vitalba (old man's beard). Invasive Species Compendium. Available online: https://www.cabi.org/isc/datasheet/14280 [Accessed: 4 August 2020] CABI (Centre for Agriculture and Bioscience International), 2019. Grapevine flavescence dorée phytoplasma (flavescence dorée of grapevine). Crop Protection Compendium. Available online: https://www.cabi.org/isc/datasheet/26184 Camerano P and Terzuolo PG, 2015. Flavescenza dorata - Guida per il contenimento delle viti rinselvatichite. IPLA, 2015. Available online: http://www.ipla.org/images/docs/guida_FD.pdf Caudullo G and Mauri A, 2016. Alnus cordata in Europe: distribution, habitat, usage and threats. In: J San-Miguel-Ayanz, D Rigo, G Caudullo, T Houston Durrant, A Mauri (eds). European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg. p. e015443+ Caudwell A, 1983. L'origine des jaunisses à mycoplasmes (MLO) des plantes et l'exemple des jaunisses de la vigne. Agronomie, 3, 103– 111. Caudwell A 1990. Epidemiology and characterization of Flavescence dorée (FD) and other grapevine yellows. Agronomie, 10, 655– 663. Chireceanu C, 2014. Abundance and population dynamics of Flavescence dorée phytoplasma vector Scaphoideus titanus Ball on abandoned grapevine in southern Romania. Scientific Papers Series B Horticulture, 58, 139– 144. Chireceanu C, Teodoru A, Mihu G, Bosoi M and Stoian I, 2017. Presence of the grapevine leafhopper Scaphoideus titanus in vineyards in north-eastern Romania. Proceedings of the VIII International Scientific Agriculture Symposium, "Agrosym 2017″, Jahorina, Bosnia and Herzegovina, October 2017,1261–1266. Chuche J and Thiéry D, 2014. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agronomy for Sustainable Development, 34(2), 381– 403. Clair D, Larrue J, Aubert G, Gillet J, Cloquemin G and Boudon-Padieu E, 2003. A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of phytoplasma in the Elm yellows group and Stolbur group and its use in survey of grapevine yellows in France. Vitis, 42, 151– 157. Credi R, Terlizzi F, Martini L, Borsari S, Reggiani N, Babini AR and Vicchi V, 2012. Flavescence dorée not transmitted by propagation materials. Informatore Agrario, 68(20), 60– 63. EFSA (European Food Safety Authority), Ciubotaru RM, Cortiñas Abrahantes J, Oyedele J, Parnell S, Schrader G, Zancanaro G and Vos S, 2018. Technical report of the methodology and work-plan for developing plant pest survey guidelines. EFSA supporting publication2018: EN-1399. 36 pp. https://doi.org/10.2903/sp.efsa.2018.en-1399 EFSA (European Food Safety Authority), Baker R, Gilioli G, Behring C, Candiani D, Gogin A, Kaluski T, Kinkar M, Mosbach-Schulz O, Neri FM, Preti S, Rosace MC, Siligato R, Stancanelli G and Tramontini S, 2019. Grapevine flavescence dorée – Pest Report and Datasheet to support ranking of EU candidate priority pests. Zenodo. https://doi.org/10.5281/zenodo.2789594. EFSA PLH Panel (EFSA Panel on Plant Health), 2014. Scientific Opinion on pest categorisation of Grapevine Flavescence Dorée. EFSA Journal 2014; 12(10):3851, 31 pp. https://doi.org/10.2903/j.efsa.2014.3851 EFSA PLH Panel (EFSA Panel on Plant Health),Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-SchmutzK, Gilioli G, Jaques Miret JA, MacLeodA, Navajas Navarro M, Niere B,Parnell S, Potting R, Rafoss T, Urek G, Rossi V, Van Bruggen A, Van Der Werf W, West J, Winter S,Bosco D, Foissac X, Strauss G, Hollo G, Mosbach-Schulz O and Grégoire J-C, 2016. Scientific opinion onthe risk to plant health of Flavescence dorée for the EU territory. EFSA Journal 2016; 14(12):4603, 83 pp.https://doi.org/10.2903/j.efsa.2016.4603 Enescu CM, Houston Durrant T and Caudullo G, 2016. Ailanthus altissima in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T and Mauri A (eds.), European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg, pp. e01ca33+ EPPO (European and Mediterranean Plant Protection Organization), 1996. Data Sheet on Quarantine Pest Grapevine flavescence dorée phytoplasma. In: Smith IM, McNamara DG, Scott PR and Holderness M. Quarantine pests for Europe. 2nd Edition. CABI/EPPO, Wallingford, 1425 pp. EPPO (European and Mediterranean Plant Protection Organization), 2016. PM 7/079 (2) Grapevine flavescence dorée phytoplasma. Bulletin OEPP/EPPO Bulletin 46 (1), 78– 93. EPPO (European and Mediterranean Plant Protection Organization), 2018. PM 3/85 (1) Inspection of places of production – Vitis plants for planting. Bulletin OEPP/EPPO Bulletin 48 (3), 330– 349. EPPO (European and Mediterranean Plant Protection Organization), online. EPPO Global Database. Available online: https://gd.eppo.int [Accessed: 15 July 2020] Eurostat, 2017. Vineyards in the EU – Statistics. Statistics Explained (https://ec.europa.eu/eurostat/statisticsexplained/) - 13/02/2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/58459.pdf Eveillard S, Jollar C, Labroussaa F, Khlil D, Perrin M, Desqué D, Salar P, Razan F, Hévin C, Bordenave L, Foissac X, Masson JE and Malembuc-Maher S, 2016. Contrasting susceptibilities to flavescence dorée in Vitis vinifera, rootstocks and wild Vitisspecies. Frontiers in Plant Science, 7, 1762. Fanjul MJ, 2017. Deliverable2.5: Technical datasheets in innovative solutions to control grapevine trunk disease and flavescence dorée. Winetwork. 02/05/2017 FAO (Food and Agriculture Organization of the United Nations), 2016a. ISPM (International Standards for Phytosanitary Measures) 31. Methodologies for sampling of consignments. FAO, Rome. 31 pp. Available online: https://www.ippc.int/en/publications/588/ FAO (Food and Agriculture Organization of the United Nations), 2016b. Plant Pest Surveillance: A guide to understand the principal requirements of surveillance programmes for national plant protection organizations. Version 1.1. FAO, Rome. FAO (Food and Agriculture Organization of the United Nations), 2017. ISPM (International Standards for Phytosanitary Measures) 8. Determination of pest status in an area. FAO, Rome. 16 pp. Available online: https://www.ippc.int/en/publications/612/ FAO (Food and Agriculture Organization of the United Nations), 2018. ISPM (International Standards for Phytosanitary Measures) 6. Surveillance. FAO, Rome. 18 pp. Available online: https://www.ippc.int/en/publications/615/ Filippin L, Jović J, Cvrković T, Forte V, Clair D, Toševski I, Boudon-Padieu E, Borgo M and Angelini E, 2009. Molecular characteristics of phytoplasmas associated with Flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathology, 58, 826– 837. Galetto L, Marzachì C, Marques R, Graziano C and Bosco D, 2011. Effects of temperature and CO2 on phytoplasma multiplication pattern in vector and plant. Proceedings second International Phytoplasmologist Working Group Meeting Neustadt an der Weinstrasse, Germany, 12–15 September 2011. Bulletin of Insectology 64 (supplement), S151– S152. Galetto L, Miliordos D, Roggia C, Rashidi M, Sacco D, Marzachì C and Bosco D, 2014. Acquisition capability of the grapevine Flavescence dorée by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant. Journal of Pest Science, 87(4), 671– 679. Galetto L, Miliordos D, Pegoraro M, Sacco D, Veratti F, Marzachì C and Bosco D, 2016. Acquisition of Flavescence Dorée phytoplasma by Scaphoideus titanus Ball from different grapevine varieties. International Journal of Molecular Sciences, 17, 1563. https://doi.org/10.3390/ijms17091563. Gatineau F, Larrue J, Clair D, Lorton F, Richard-Molard M and Boudon-Padieu E, 2001. A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius (Hemiptera: Cixiidae). European Journal of Plant Pathology, 107, 263– 271. Gelmetti A, Ghidoni F, Cainelli C and Bottura M, 2018. Fitoplasmi della vite in Trentino: evoluzione, monitoraggi, analisi molecolari. Proceedings of the"Giornate fitopatologiche 2018: protezione delle piante, qualità, ambiente". CLUEB. pp. 217–226. Houston Durrant T, de Rigo D and Caudullo G, 2016a. In: J San-Miguel-Ayanz, D Rigo, G Caudullo, T Houston Durrant and A Mauri (eds). Alnus glutinosa in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg. p. pp. e01f3c0+.. Houston Durrant T, de Rigo D and Caudullo G, 2016b. In: J San-Miguel-Ayanz, D Rigo, G Caudullo, T Houston Durrant and A Mauri (eds). Alnus incana in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg. p. pp. e01ff87.. Hren M, Boben J, Rotter A, Kralj P, Gruden K and Ravnikar M, 2007. Real-time PCR detection systems for flavescence dorée and bois noir phytoplasmas in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathology, 56(5), 785– 796. Jermini M, Conedera M, Rizzoli A, Belgeri E, Filippin L and Angelini E, 2019. Potential role of Orientus ishidae in the 'flavescence dorée' epidemics in Ticino. Switzerland. Phytopathogenic Mollicutes, 9(1), 67– 68. Kogovšek P, Mehle N, Pugelj A, Jakomin T, Schroers H-J, Ravnikar M and Dermastia M, 2016. Rapid loop-mediated isothermal amplification assays forgrapevine yellows phytoplasmas on crude leaf-vein homogenate hasthe same performance as qPCR. European Journal of PlantPathology, 148, 75– 84. https://doi.org/10.1007/s10658-016-1070-z. Lessio F and Alma A, 2004. Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera Cicadellidae), vector of the phytoplasma agent of grapevine flavescence dorée. Agricultural and Forest Entomology, 6, 121– 127. Lessio F and Alma A, 2006. Spatial distribution of nymphs of Scaphoideus titanus (Homoptera: Cicadellidae) in grapes and evaluation of sequential sampling plans. Journal of Economic Entomology, 99, 578– 582. Lessio F, Tedeschi R and Alma A, 2007. Presence of Scaphoideustitanus on American grapevine in woodlands, and infection with "flavescence dorée" phytoplasmas. Bulletin of Insectology, 60(2), 373– 374. Lessio F and Alma A, 2008. Host plants and seasonal presence of Dictyophara europaea in the vineyard agro-ecosystem. Bulletin of Insectology, 61, 199– 200. Lessio F, Tedeschi R, Pajoro M and Alma A, 2009. Seasonal progression of sex ratio and phytoplasma infection in Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bulletin of Entomological Research, 99, 377– 383. Lessio F, Albertin I, Lombardo DM, Gotta P and Alma A, 2011. Monitoring Scaphoideus titanus for IPM purposes: results of a pilot-project in Piedmont (NW Italy). Bulletin of Insectology, 64(Suppl), 269– 270. Lessio F, Tota F and Alma A, 2014. Tracking the dispersion of Scaphoideus titanus ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark–capture technique. Bulletin of Entomological Research, 104, 432– 443. Lessio F, Picciau L, Gonella E, Mandrioli M, Tota F and Alma A, 2016. The mosaic leafhopper Orientus ishidae: Host plants, spatial distribution, infectivity, and transmission of 16SrV phytoplasmas to vines. Bulletin of Insectology, 69, 277– 289. Lessio F, Bocca F and Alma A, 2019. Development, spatial distribution, and presence on grapevine of nymphs of Orientus ishidae (Hemiptera:Cicadellidae), a new vector of Flavescence Dorée phytoplasmas. Journal of Economic Entomology, 112, 2558– 2564. Linder C and Cavadini M, 2014. Dictyopara europaea an alternative host of flavescence dorée in Switzerland? Proceedings of the IOBC/WPRS Working Group 'Integrated protection and production in Viticulture', Ascona, Switzerland, 13–17 October 2013. IOBC/WPRS Bulletin, 105, 191– 194. Loiseau M, 2015. European interlaboratory comparison of detection methods for 'flavescence dorée' phytoplasma: preliminary results. Phytopathogenic Mollicutes, 5(1s), S35– S37. Maixner M, Reinert W and Darimont H, 2000. Transmission of grapevine yellows by Oncopsisalni (Schrank) (Auchenorrhyncha : Macropsinae). Vitis, 39, 83– 84. Malembic-Maher S, Desqué D, Khalil D, Salar P, Bergey B, Danet J-L, Duret S, Dubrana-Ourabah M-P, Beven L, Ember I, Acs Z, Della Bartola M, Materazzi A, Filippin L, Krnjajic S, Krstić O, Toševski I, Lang F, Jarausch B, Kölber M, Jović J, Angelini E, Arricau-Bouvery N, Maixner M and Foissac X, 2020. When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe. PLoS Pathogens, 16(3), e1007967. https://doi.org/10.1371/journal.ppat.1007967. Marzachì C, Verati F and Bosco D, 1998. Direct PCR detection of phytoplasmas in experimentally infected insects. Annals of Applied Biology, 133, 45– 54. Mehle N, Kogovšek P, Constable F, De Jonghe K, Loiseau M and Veratti F, 2017. Test performance study of isothermal amplification tests for the detection of Grapevine flavescence dorée phytoplasma and 'Candidatus Phytoplasma solani'. EPPO Bulletin, 47, 18– 23. Morone C, Boveri M, Giosue S, Gotta P, Rossi V, Scapin I and Marzachi C, 2007. Epidemiology of flavescence dorée in vineyards in northwestern Italy. Phytopathology, 97, 1422– 1427. https://doi.org/10.1094/PHYTO-97-11-1422. Osler R, Zucchetto C, Carraro L, Frausin C, Pavan F, Vettorello G and Girolami V, 2002. Transmission of flavescencedoree and black wood and performance of the infected vines. Informatore Agrario, 58(19), 61– 65. Pasquini G, Reisenzein H, Steyer S, Ustun N, Sousa E, Schaerer S, De Jonghe K, Bertaccini A, Bianco PA, Gargani E, Simoni S, Duduk B, Dermastia M, Battle A, Loiseau M and Angelini E, 2014. Epidemiological studies on reservoir hosts and potential vectors of Grapevine flavescence dorée (FD) and validation of different diagnostic procedures for GFD (GRAFDEPI). Zenodo, Scientific report of the Euphresco funded project. https://doi.org/10.5281/zenodo.1326462. Pavan F, Mori N, Bigot G and Zandigiacomo P, 2012. Border effect in spatial distribution of Flavescence doréeaffected grapevines and outside source of Scaphoideus titanus vectors. Bulletin of Insectology, 65, 281– 290. Pelletier C, Salar P, Gillet J, Cloquemin G, Very P, FoissacX and Malembic-Maher S, 2009. Triplex real-time PCRassay for sensitive and simultaneous detection of grapevinephytoplasmas of the 16SrV and 16SrXII-A groups with anendogenous analytical control. Vitis, 48(2), 87– 95. Prezelj N, Nikolić P, Gruden K, Ravnikar M and Dermastia M, 2013. Spatiotemporal distribution of flavescence dorée phytoplasma in grapevine. Plant Pathology, 62(4), 760– 766. doi:10.1111/j.13653059.2012.02693.x Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M and Dermastia M, 2016. Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. 'Modrafrankinja' with Flavescence dorée phytoplasma. Frontiers. Plant Science, 7, 711. Prezman F, 2017. Flavescence Dorée: the importance of territory monitoring. Technical article. WINETWORK project. Available online: http://www.winetwork-data.eu/en/technical_articles/technical_articles_cat_6.htm# Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W and Davis RE, 2013. 'Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63(8), 2879– 2894. Quaglino F, Sanna F, Moussa A, Faccincani M, Passera A, Casati P, Bianco PA and Mori N, 2019. Identification and ecology of alternative insect vectors of 'Candidatus Phytoplasma solani'to grapevine. Scientific Reports, 9(1), 1– 11. Reisenzein H and Strauss G, 2019. Sporadic outbreaks of 'flavescence dorée' in Austrian vineyards and the role of Phlogottetix cyclops as a potential vector. Phytopathogenic Mollicutes, 9, 61– 62. Rigamonti IE, Brambilla C, Colleoni E, Jermini M, Trivellone V and Baumgärtner J, 2016. Spatial distribution and sampling plans for grapevine plant canopy-inhabiting Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs. Journal of Economic Entomology, 109, 920– 929. Ripamonti M, Pegoraro M, Rossi M, Bodino N, Beal D, Panero L, Marzachì C and Bosco D, 2020. Prevalence of Flavescence dorée phytoplasma infected Scaphoideus titanus in different vineyard agroecosystems of Northwestern Italy. Insects, 11, 15 pp. https://doi.org/10.3390/insects11050301. Roggia C, Caciagli P, Galetto L, Pacifico D, Veratti F, Bosco D and Marzachì C, 2014. Flavescence dorée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathology, 63, 31– 41. Rossi M, Pegoraro M, Ripamonti M, Abbà S, Beal D, Giraudo A, Veratti F, Malembic-Maher S, Salar P, Bosco D and Marzachì C, 2019. Genetic diversity of flavescence dorée phytoplasmas at the vineyard scale. Applied and Environmental Microbiology, 85(10), e03123– 18. Salar P, Charenton C, Foissac X and Malembic-Maher S, 2013. Multiplication kinetics of Flavescence dorée phytoplasma in broad bean. Effect of phytoplasma strain and temperature. European Journal of Plant Pathology, 135(2), 371– 381. Schvester D, Moutous G and Carle P, 1962. Scaphoideus littoralis Ball (Homopt. Jassidae) cicadelle vectrice de la Flavescence dorée de la vigne. Revue de Zoologie Agricole et Appliquée, 61(10–12), 118– 131. Steffek R, Reisenzein H and Zeisner N, 2007. Analysis of the pest risk from Grapevine flavescence dorée phytoplasma to Austrian viticulture. EPPO Bulletin, 37, 191– 203. Strauss G and Reisenzein H, 2018. First detection of Flavescence dorée phytoplasma in Phlogotettix cyclops (Hemiptera, Cicadellidae) and considerations on its possible role as vector in Austrian vineyards. Integrated Protection in Viticulture IOBC-WPRS Bulletin, 139, 12– 21. Szalárdi T, Nagy K and Nagy A, 2019. Distribution of the American grapevine leafhopper (Scaphoideus titanus ball 1932) in west Romania. Acta Agraria Debreceniensis, 2, 127– 130. Tiso R and Solmi P, 2014. Per salvare i vigneti, caccia allo Scaphoideus titanus. Agricoltura, Giugno, 2014, 64– 65. Trivellone V, Jermini M, Linder C, Cara C, Delabays N and Baumgärtner J, 2013. Rôle de la flore du vignoble sur la distribution de Scaphoideus titanus. Revue suisse de Viticulture, Arboriculture, Horticulture, 45, 222– 228. Vidano C, 1964. Scoperta in Italia delloScaphoideuslittoralis Ball, cicalina americana collegata alla 'Flavescence dorée'della vite. L'Italia Agricola, 101(10), 1031– 1049. Zeisner N, 2008. Occurrence and spread of Scaphoideus titanus in Austria. Integrated Protection in Viticulture IOBC/wprs Bulletin, 36, 375– 377. Volume17, Issue8August 20201909E This article also appears in:Toolkit for plant pest surveillance in the EU ReferencesRelatedInformation
Referência(s)