Capítulo de livro

Groupes de Lie à Structure Symplectique Invariante

1991; Springer Nature; Linguagem: Francês

10.1007/978-1-4613-9719-9_17

ISSN

0940-4740

Autores

Alberto Abad Medina, Philippe Revoy,

Tópico(s)

Homotopy and Cohomology in Algebraic Topology

Resumo

Un groupe de Lie G admet une structure symplectique invariante s'il existe sur G une 2-forme différentielle fermée invariante à gauche dont le rang est égal à la dimension de G. Un tel groupe sera appelé par abus de langage, symplectique et son algèbre de Lie sera dite symplectique. Le principal résultat de ce travail est de fournir une classification des groupes symplectiques nilpotents par leurs algèbres de Lie. L'idée centrale dans cette classification est la notion de double extension (section 2) d'une algèbre symplectique: grosso modo en additionnant un plan symplectique à une algèbre symplectique on obtient une algèbre symplectique. Cette notion est l'analogue symplectique de la notion de double extension des algèbres de Lie orthogonales, que nous avons introduite dans [Me-Re 1].Nous montrons que toute algèbre symplectique nilpotente s'obtient par une suite de doubles extensions à partir de l'algèbre réduite à zéro (théorème 2.5). Dire que le groupe de Lie symplectique (G,ω) est double extension du groupe (H, Ω) veut dire que ce dernier est une variété réduite de Marsden-Weinstein de (G,ω). Toute nilvariété symplectique étant quotient d'un groupe nilpotent symplectique par un sous-groupe discret co-compact, [Be-Go] la double extension permet d'obtenir toutes ces variétés.

Referência(s)