Artigo Revisado por pares

CubeSat Cluster Deployment Track Initiation via a Radar Admissible Region Birth Model

2020; American Institute of Aeronautics and Astronautics; Volume: 43; Issue: 10 Linguagem: Inglês

10.2514/1.g005139

ISSN

1533-3884

Autores

John A. Gaebler, Penina Axelrad, Paul W. Schumacher,

Tópico(s)

Spacecraft Design and Technology

Resumo

No AccessEngineering NotesCubeSat Cluster Deployment Track Initiation via a Radar Admissible Region Birth ModelJohn A. Gaebler, Penina Axelrad and Paul W. Schumacher Jr.John A. GaeblerUniversity of Colorado Boulder, Boulder, Colorado 80303, Penina AxelradUniversity of Colorado Boulder, Boulder, Colorado 80303 and Paul W. Schumacher Jr.Air Force Research Laboratory, Kihei, Hawaii 96753Published Online:25 Aug 2020https://doi.org/10.2514/1.G005139SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Zimmerman R., Doan D., Leung L., Mason J., Parsons N. and Shahid K., "Commissioning the World's Largest Satellite Constellation," Proceedings of the AIAA/USU Conference on Small Satellites, SSC17-X-03, Utah State Univ., 2017, https://digitalcommons.usu.edu/smallsat/2017/all2017/138/. Google Scholar[2] Mahler R. P. S., "PHD Filters of Higher Order in Target Number," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 4, 2007, pp. 1523–1543. https://doi.org/10.1109/TAES.2007.4441756 CrossrefGoogle Scholar[3] Vo B.-T. and Vo B.-N., "Labeled Random Finite Sets and Multi-Object Conjugate Priors," IEEE Transactions on Signal Processing, Vol. 61, No. 13, 2013, pp. 3460–3475. https://doi.org/10.1109/TSP.2013.2259822 CrossrefGoogle Scholar[4] Vo B.-N., Vo B.-T. and Phung D., "Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter," IEEE Transactions on Signal Processing, Vol. 62, No. 24, 2014, pp. 6554–6567. https://doi.org/10.1109/TSP.2014.2364014 CrossrefGoogle Scholar[5] Vo B.-N., Vo B.-T. and Hoang H., "An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter," IEEE Transactions on Signal Processing, Vol. 65, No. 8, 2017, pp. 1975–1987. https://doi.org/10.1109/TSP.2016.2641392 Google Scholar[6] Bryant D., Delande E., Gehly S., Houssineau J., Clark D. and Jones B., "The CPHD Filter with Target Spawning," IEEE Transactions on Signal Processing, Vol. 65, No. 5, 2017, pp. 13,124–13,138. https://doi.org/10.1109/TSP.2016.2597126 Google Scholar[7] Bryant D., Vo B.-T., Vo B.-N. and Jones B., "A Generalized Labeled Multi-Bernoulli Filter with Object Spawning," IEEE Transactions on Signal Processing, Vol. 66, No. 23, 2018, pp. 6177–6189. https://doi.org/10.1109/TSP.2018.2872856 Google Scholar[8] DeMars K. J. and Jah M. K., "Probabilistic Initial Orbit Determination Using Gaussian Mixture Models," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013, pp. 1324–1335. https://doi.org/10.2514/1.59844 LinkGoogle Scholar[9] Tommei G., Milani A. and Rossi A., "Orbit Determination of Space Debris: Admissible Regions," Celestial Mechanics and Dynamical Astronomy, Vol. 97, No. 4, 2007, p. 289–304. https://doi.org/10.1007/s10569-007-9065-x CrossrefGoogle Scholar[10] Milani A., Gronchi G., Vitturi M. and Knezevic Z., "Orbit Determination with Very Short Arcs: I. Admissible Regions," Celestial Mechanics and Dynamical Astronomy, Vol. 90, No. 1, 2004, pp. 57–85. https://doi.org/10.1007/s10569-004-6593-5 CrossrefGoogle Scholar[11] Jones B., Gehly S. and Axelrad P., "Measurement-Based Birth Model for a Space Object Cardinalized Probability Hypothesis Density Filter," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2014-4311, 2014. https://doi.org/10.2514/6.2014-4311 Google Scholar[12] Jones B. and Vo B.-N., "A Labeled Multi-Bernoulli Filter for Space Object Tracking," Advances in the Astronautical Sciences, Spaceflight Mechanics, Vol. 155, American Astronautical Soc. Paper 15-413, San Diego, CA, 2015, pp. 1069–1088. Google Scholar[13] Jones B., Vo B.-T. and Vo B.-N., "Generalized Labeled Multi-Bernoulli Space-Object Tracking with Joint Prediction and Update," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5502, 2016. https://doi.org/10.2514/6.2016-5502 Google Scholar[14] DeMars K. J. and Jah M. K., "Probabilistic Initial Orbit Determination Using Radar Returns," Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Vol. 150, Univelt Inc., San Diego, CA, Jan. 2014, pp. 35–54. Google Scholar[15] Siminski J. A., Montenbruck O., Fiedler H. and Schildknecht T., "Short-Arc Tracklet Association for Geostationary Objects," Advances in Space Research, Vol. 53, No. 8, 2014, pp. 1184–1194. https://doi.org/10.1016/j.asr.2014.01.017 CrossrefGoogle Scholar[16] Cai H., Gehly S., Yang Y. and Zhang K., "Modeling Birth for the Labeled Multi-Bernoulli Filter Using a Boundary-Value Approach," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 1, 2020, pp. 162–169. https://doi.org/10.2514/1.G004112 LinkGoogle Scholar[17] Schumacher P. W., Gaebler J. A., Roscoe C. W., Wilkins M. P. and Axelrad P., "Parallel Initial Orbit Determination Using Angles-Only Observation Pairs," Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 9, 2018, p. 60. https://doi.org/10.1007/s10569-018-9852-6 Google Scholar[18] Izzo D., "Revisiting Lambert's Problem," Celestial Mechanics and Dynamical Astronomy, Vol. 121, No. 1, 2015, pp. 1–15. https://doi.org/10.1007/s10569-014-9587-y CrossrefGoogle Scholar[19] Reuter S., Vo B.-T., Vo B.-N. and Dietmayer K., "The Labeled Multi-Bernoulli Filter," IEEE Transactions on Signal Processing, Vol. 62, No. 12, 2014, pp. 3246–3260. https://doi.org/10.1109/TSP.2014.2323064 CrossrefGoogle Scholar[20] Schumacher P. W., Sabol C., Higginson C. C. and Alfriend K. T., "Uncertain Lambert Problem," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1573–1584. https://doi.org/10.2514/1.G001019 LinkGoogle Scholar[21] Vallado D. A., Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press, Portland, OR, 2013, p. 255. Google Scholar[22] Joint Chiefs of Staff, "Joint Publication 3-14: Space Operations," Tech. Rept., Washington, D.C., 2018, https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_14.pdf. Google Scholar[23] Foster C., Hallam H. and Mason J., "Orbit Determination and Differential-Drag Control of Planet Labs CubeSat Constellations," Advances in the Astronautical Sciences, Vol. 156, Univelt Inc., San Diego, CA, 2016, pp. 645–657. Google Scholar[24] Nicolls M., Vittaldev V., Ceperley D., Creus-Costa J., Foster C., Griffith N., Lu E., Mason J., Park I., Rosner C. and Stepan L., "Conjunction Assessment for Commercial Satellite Constellations Using Commercial Radar Data Sources," Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, Maui Economic Development Board, Inc., Maui, HI, 2017. Google Scholar[25] Schuhmacher D., Vo B.-T. and Vo B.-N., "A Consistent Metric for Performance Evaluation of Multi-Object Filters," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 2008, pp. 3447–3457. https://doi.org/10.1109/TSP.2008.920469 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byPossibilistic space object tracking under epistemic uncertaintyAdvances in Space Research, Vol. 463A Moving Window Based Approach to Multi-scan Multi-Target TrackingRadar system simulation and non-Gaussian mathematical model under virtual reality technology15 December 2021 | Applied Mathematics and Nonlinear Sciences, Vol. 7, No. 1Multi-Target Track Initiation in Heavy ClutterComputers, Materials & Continua, Vol. 72, No. 3 What's Popular Volume 43, Number 10October 2020 CrossmarkInformationCopyright © 2020 by John Gaebler and Penina Axelrad. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace EngineeringAerospace SciencesAstrodynamicsAstronauticsAstronomyCelestial MechanicsEuropean Space AgencyKepler's Laws of Planetary MotionOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationPlanetsSolar PhysicsSpace AgenciesSpace OrbitSpace Science and Technology KeywordsCubeSatRadar TrackingEarthGeneral Mission Analysis ToolOrbital PeriodCombined Space Operations CenterSpace SurveillanceOrbit DeterminationExtended Kalman FilterEarth Centered InertialAcknowledgmentsThis work was performed during an Air Force Research Laboratory Scholars Program summer internship with additional support from the Department of Education through a Graduate Assistantships in Areas of National Need fellowship in Critical Aerospace Technologies.PDF Received2 February 2020Accepted15 July 2020Published online25 August 2020

Referência(s)