Revisão Acesso aberto Revisado por pares

Host genetic factors and susceptibility to SARS‐CoV ‐2 infection

2020; Wiley; Volume: 32; Issue: 5 Linguagem: Inglês

10.1002/ajhb.23497

ISSN

1520-6300

Autores

Theodore G. Schurr,

Tópico(s)

COVID-19 epidemiological studies

Resumo

American Journal of Human BiologyVolume 32, Issue 5 e23497 COMMENTARY Host genetic factors and susceptibility to SARS-CoV-2 infection Theodore G. Schurr, Corresponding Author Theodore G. Schurr [email protected] orcid.org/0000-0001-9323-9237 Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA Correspondence Theodore G. Schurr, Department of Anthropology, University of Pennsylvania, 3260 South Street, Philadelphia, PA 19104-6398, USA. Email: [email protected] Contribution: Conceptualization, ​Investigation, Writing - original draft, Writing - review & editingSearch for more papers by this author Theodore G. Schurr, Corresponding Author Theodore G. Schurr [email protected] orcid.org/0000-0001-9323-9237 Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA Correspondence Theodore G. Schurr, Department of Anthropology, University of Pennsylvania, 3260 South Street, Philadelphia, PA 19104-6398, USA. Email: [email protected] Contribution: Conceptualization, ​Investigation, Writing - original draft, Writing - review & editingSearch for more papers by this author First published: 02 September 2020 https://doi.org/10.1002/ajhb.23497Citations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., … Jonigk, D. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine, 383, 120–128. https://doi.org/10.1056/NEJMoa2015432 10.1056/NEJMoa2015432 CASPubMedWeb of Science®Google Scholar Andersen, K. G., Rambaut, A., Ian Lipkin, W., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450–452. https://doi.org/10.1038/s41591-020-0820-9 10.1038/s41591-020-0820-9 CASPubMedWeb of Science®Google Scholar Asselta, R., Paraboschi, E. M., Mantovani, A. & Duga, S. 2020. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. medRxiv, doi: https://doi.org/10.1101/2020.03.30.20047878. Google Scholar Boni, M. F., Lemey, P., Jiang, X., Lam, T. T.-Y., Perry, B. W., Castoe, T. A., … Robertson, D. L. (2020). Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology. https://doi.org/10.1038/s41564-020-0771-4 10.1038/s41564-020-0771-4 PubMedWeb of Science®Google Scholar Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., … Thiel, A. (2020). SARS-CoV-2-reactive T cells in health donors and patients with COVID-19. Nature. https://doi.org/10.1038/s41586-020-2598-9 10.1038/s41586-020-2598-9 Web of Science®Google Scholar Cao, Y., Li, l., Feng, Z., Wan, S., Huang, P., Sun, X., … Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discovery, 6, 11. https://doi.org/10.1038/s41421-020-0147-1 10.1038/s41421-020-0147-1 CASPubMedWeb of Science®Google Scholar Caramelo, F., Ferreira, N., & Oliveiros B. 2020. Estimation of risk factors for COVID-19 mortality-preliminary results. medRxiv https://doi.org/10.1101/2020.02.24.20027268. Google Scholar CDC COVID Data Tracker 2020. Available from https://www.cdc.gov/covid-data-tracker/#cases. Google Scholar Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe, 19(2), 181–193. 10.1016/j.chom.2016.01.007 CASPubMedWeb of Science®Google Scholar Chakavarty, D., Nair, S. S., Hammouda, N., Ratnani, P., Gharib, Y., Wagasakar, V., … Tewari, A.K. (2020). Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Communications Biology, 3(374). https://doi.org/10.1038/s42003-020-1088-9 Google Scholar Cheng, Y., Cheng, G., Chui, C. H., Lau, F. Y., Chan, P. K. S., Ng, M. H. L., … Wong, R. S. M. (2005). ABO blood group and susceptibility to severe acute respiratory syndrome. Journal of the American Medical Association, 293(12), 1450–1451. CASPubMedWeb of Science®Google Scholar Ching, J. C.-Y., Chan, K. Y. K., Lee, E. H. L., Xu, M.-S., Ting, C. K. P., So, T. M. K., … Khoo, U.-S. (2010). Significance of the Myxovirus resistance A (MxA) gene—123C>A single-nucleotide polymorphism in suppressed interferon β induction of severe acute respiratory syndrome coronavirus infection. The Journal of Infectious Diseases, 201(12), 1899–1908. https://doi.org/10.1086/652799 10.1086/652799 CASPubMedWeb of Science®Google Scholar Coronavirus Vaccine Tracker. 2020. The New York Times (Available from https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html?auth=login-email&login=email). Google Scholar COVID-19 Dashboard. (2020). Center for Systems Science and Engineering. Baltimore, MD: Johns Hopkins University Available from https://coronavirus.jhu.edu/map.html Google Scholar Curtis, D. (2020). Variants in ACE2 and TMPRSS2 genes are not major determinants of COVID-19 severity in UK Biobank subjects. https://doi.org/10.1101/2020.05.01.20085860 Google Scholar Duquerroy, S., Vigouroux, A., Rottier, P. J. M., Rey, F. A., & Bosch, B. J. (2005). Post-fusion hairpin conformation of the Sars coronavirus spike glycoprotein. Virology, 335, 276–285. https://doi.org/10.1016/j.virol.2005.02.022 10.1016/j.virol.2005.02.022 CASPubMedWeb of Science®Google Scholar Ellinghaus, D., Degenhardt, F., Bujunda, L., Buti, M., Albillos, A., Invernizzi, P., … Karlsen, T. H. 2020. The ABO blood group locus and a chromosome 3 gene cluster associate with SARS-CoV-2 respiratory failure in an Italian-Spanish genome-wide association analysis. medRxiv doi:https://doi.org/10.1101/2020.05.31.20114991. Google Scholar Fani, M., Teimoori, A., & Gharafi, S. (2020). Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virology, 15(5), 317–323. 10.2217/fvl-2020-0050 CASWeb of Science®Google Scholar Forster, P., Forster, L., Renfrew, C., & Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences USA, 117(17), 9241–9243. https://doi.org/10.1073/pnas.2004999117 10.1073/pnas.2004999117 CASPubMedWeb of Science®Google Scholar Ghafouri-Farda, S., Noroozib, R., Vafeec, R., Branicki, W., Pošpiech, E., Pyrc, K., … Taheri, M. (2020). Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomedicine & Pharmacotherapy, 128, 110296. 10.1016/j.biopha.2020.110296 PubMedWeb of Science®Google Scholar Godri Pollitt, J. J., Peccia, J., Ko, A. I., Kaminski, N., Dela Cruz, C. S., Nebert, D. W., … Vasiliou, V. (2020). COVID-19 vulnerability: The potential impact of genetic susceptibility and airborne transmission. Human Genomics, 14, 17. https://doi.org/10.1186/s40246-020-00267-3 10.1186/s40246-020-00267-3 CASPubMedWeb of Science®Google Scholar Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Rydyznski Moderbacher, C., … Sette, A. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 181, 1–13. 10.1016/j.cell.2020.05.015 PubMedWeb of Science®Google Scholar Guan, W.-J., Liang, W.-H., Zhao, Y., Liang, H.-R., Chen, Z.-S., Li, Y.-M., T, … He, X. 2020. Comorbidity and its impact on 1,590 patients with COVID-19 in China: A nationwide analysis. medRxiv https://doi.org/10.1101/2020.02.25.20027664. Google Scholar Hoffmann, M., Kleine-Weber, H., Schroder, S., Krüger, N., Herrler, T., Erichsen, S., … Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, 271–280. https://doi.org/10.1016/j.cell.2020.02.052 10.1016/j.cell.2020.02.052 CASPubMedWeb of Science®Google Scholar Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Journal of Medical Virology, 92, 1580–1586. https://doi.org/10.1002/jmv.25832 10.1002/jmv.25832 CASPubMedWeb of Science®Google Scholar Jain, V., & Yuan, J.-M. 2020. Systematic review and meta-analysis of predictive symptoms and comorbidities for severe COVID-19 infection. medRxiv https://doi.org/10.1101/2020.03.15.20035360. Google Scholar Kachuri, L., Francis, S. S., Morrison, M., Bossé, Y., Cavazos, T. B., Rashkin, S., R., … Witte, J. S. 2020. The landscape of host genetic factors involved in infection to common viruses and SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.05.01.20088054 Google Scholar Konno, Y., Kimura, I., Uriu, J., Fukushi, N., Irie, T., Koyanagi, Y., … Sato, K. 2020. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant. bioRxiv doi: https://doi.org/10.1101/2020.05.11.088179. Google Scholar Kumar, S., Nyodu, R., Maurya, V. K., & Saxena, S. K. (2020). Host immune response and immunobiology of human SARS-CoV-2 infection. In Coronavirus disease 2019 (COVID-19): Epidemiology, pathogenesis, diagnosis, and therapeutics (pp. 43–53). Singapore: Springer. https://doi.org/10.1007/978-981-15-4814-7_5 10.1007/978-981-15-4814-7_5 Google Scholar Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., & Zhang, Q. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5 10.1038/s41586-020-2180-5 CASPubMedWeb of Science®Google Scholar Li, X., Xu, S., Yu, M., Wang, K., Tao, Y., Zhou, Y., … Zhao, J. (2020). Risk factors for severity and mortality in adult COVID-19 in patients in Wuhan. Journal of Allergy and Clinical Immunology, 146, 110–118. 10.1016/j.jaci.2020.04.006 CASPubMedWeb of Science®Google Scholar Lopera Maya, E., van der Graaf, A., Lanting, P., van der Geest, M., Fu, J., Swertz, M., … Lifelines Cohort Study. (2020). Lack of association between genetic variants at ACE2 and TMPRSS2 genes involved in SARS-CoV-2 infection and human quantitative phenotypes. Frontiers in Genetics, 11, 613. https://doi.org/10.3389/fgene.2020.00613 10.3389/fgene.2020.00613 PubMedWeb of Science®Google Scholar Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: Spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468–478. 10.1016/j.tim.2015.06.003 CASPubMedWeb of Science®Google Scholar Luostari, K., Hartikainen, J. M., Tengström, M., Palvimo, J. J., Kataja, V., Mannernaa, A., & Kosma, V.-M. (2014). Type II transmembrane serine protease gene variants associate with breast cancer. PLoS One, 9, e102519. https://doi.org/10.1371/journal.pone.0102519 10.1371/journal.pone.0102519 PubMedWeb of Science®Google Scholar Murray, M. F., Kenny, E. E., Ritchie, M. D., Rader, D. J., Bale, A. E., Giovanni, M. A., & Abu-Husn, N. S. (2020). COVID-19 outcomes and the human genome. Genetics in Medicine, 22, 1175–1177. https://doi.org/10.1038/s41436-020-0832-3 10.1038/s41436-020-0832-3 CASPubMedWeb of Science®Google Scholar Muus, C., Luecken, M. D., Eraslan, G., Waghray, A., Heimberg, G., Sikkema, L., … The Human Cell Atlas Lung Biological Network. 2020. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv doi: https://doi.org/10.1101/2020.04.19.049254. Google Scholar Nguyen, A., David, J. K., Maden, S. K., Wood, M. A., Weeder, B. R., Nellore, A., & Thompson, R. F. (2020). Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. Journal of Virology, 94, e00510-20. https://doi.org/10.1128/JVI.00510-20 10.1128/JVI.00510-20 PubMedWeb of Science®Google Scholar Oppel, Jr., R. A., Gebeloff, R., Lai, K. K. R., Wright, W., & Smith, M. 2020. The fullest look at the racial inequality of coronavirus. The New York Times. Available from https://www.nytimes.com/interactive/2020/07/05/us/coronavirus-latinos-african-americans-cdc-data.html?searchResultPosition=3 Google Scholar Peters, M. C., Sajuthi, S., Deford, P., Christenson, S., Rios, C. L., Montgomery, M. T., … Fahy, J. V. (2020). COVID-19 related genes in sputum cells in asthma: Relationship to demographic features and corticosteroids. American Journal of Respiratory and Critical Care Medicine, 202, 83–90. https://doi.org/10.1164/rccm.202003-0821OC 10.1164/rccm.202003-0821OC PubMedWeb of Science®Google Scholar Rapkiewicz, A. V., Mai, X., Carsons, S. E., Pittaluga, S., Kleiner, D. E., Berger, J. S., … Reynolds, H. R. (2020). Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine. https://doi.org/10.1016/j.eclinm.2020.100434 10.1016/j.eclinm.2020.100434 PubMedGoogle Scholar Schrode, N., Ho, S.-K., Yamamuro, K., Dobbyn, A., Huckins, A., Matos, M. R., … Brennand, K. J. (2019). Synergistic effects of common schizophrenia risk variants. Nature Genetics, 51, 1475–1485. https://doi.org/10.1038/s41588-019-0497-5 10.1038/s41588-019-0497-5 CASPubMedWeb of Science®Google Scholar Sironi, M., Hasnain, S. E., Rosenthal, B., Phan, T., Luciani, F., Shaw, M.-A., … the Editors of Infection, Genetics and Evolution. (2020). SARS-Cov-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infection, Genetics and Evolution, 84, 104834. https://doi.org/10.1016/j.meegid.2020.104384 10.1016/j.meegid.2020.104384 Google Scholar Taylor, K., Das, S., Pearson, M., Kozubek, J., Pawlowski, M., Jensen, C. E., … Gardner, S. 2020. Analysis of genetic host response risk factors in severe COVID-19 patients. medRxiv doi: https://doi.org/10.1101/2020.06.17.20134015. Google Scholar The COVID-19 Host Genetics Initiative. (2020). A global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. European Journal of Human Genetics, 28, 715–718. https://doi.org/10.1038/s41431-020-0636-6 10.1038/s41431-020-0636-6 PubMedWeb of Science®Google Scholar The Severe Covid-19 GWAS Group. (2020). Genomewide association study of severe Covid-19 with respiratory failure. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2020283 Google Scholar van der Made, C. I., Simons, A., Schuurs-Hoeijmakers, J., van den Heuvel, G., Mantere, T., Kersten, S., … Hoischen, A. (2020). Presence of genetic variants among young men with severe COVID-19. Journal of the American Medical Association, https://doi/org/10.1001/jama.2020.13719. Published online July 24, 2020. Web of Science®Google Scholar Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, 76, 14–20. 10.1016/j.ejim.2020.04.037 CASPubMedWeb of Science®Google Scholar Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058 10.1016/j.cell.2020.02.058 CASPubMedWeb of Science®Google Scholar Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., … Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Journal of the American Medical Association, 323, 1061–1069. https://doi.org/10.1001/jama.2020.1585 10.1001/jama.2020.1585 CASPubMedWeb of Science®Google Scholar Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., … McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263. 10.1126/science.abb2507 CASPubMedWeb of Science®Google Scholar Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., … Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARSCoV- 2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respiratory Medicine, 8(5), 475–481. https://doi.org/10.1016/S2213-2600(20):30079-5 10.1016/S2213-2600(20)30079-5 CASPubMedWeb of Science®Google Scholar Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of the 'cytokine storm' in COVID-19. Journal of Infection, 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037 10.1016/j.jinf.2020.03.037 CASPubMedWeb of Science®Google Scholar Zhang, Y., Geng, X., Tan, Y., Li, Q., Xu, C., Xu, J., … Wang, H. (2020). New understanding of the damage of SARS-CoV-2 infection outside of the respiratory system. Biomedicine & Pharmacotherapy, 127, 110195. https://doi.org/10.1016/j.biopha.2020.110195 10.1016/j.biopha.2020.110195 CASPubMedWeb of Science®Google Scholar Zhao, J., Yang, Y., Huang, H., Li, D., Gu, D. Lu, X., … Wang, P.G. 2020. Relationship between the ABO blood group and the COVID-19 susceptibility. MedRxiv doi: https://doi.org/10.1101/2020.03.11.20031096. Google Scholar Zhou, F., Yu, T., Du, R., Fan, G., Li, Y., Liu, Z., … Cao, Y. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan China: A retrospective cohort study. Lancet, 95, 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 10.1016/S0140-6736(20)30566-3 Web of Science®Google Scholar Zhou, H., Chen, X., Hu, T., Li, J., Song, H., Liu, Y., … Shi, W. (2020). A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30, 1–8. https://doi.org/10.1016/j.cub.2020.05.023 10.1016/j.cub.2020.05.023 PubMedWeb of Science®Google Scholar Zou, X., Chen, K., Zou, J., Han, P., Hai, J., & Han, Z. (2020). The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Frontiers in Medicine, 14, 185–192. https://doi.org/10.1007/s11684-020-0754-0 10.1007/s11684-020-0754-0 Web of Science®Google Scholar Citing Literature Volume32, Issue5Special Issue:Human Biologists Confront the COVID‐19 PandemicSeptember/October 2020e23497 ReferencesRelatedInformation

Referência(s)