Artigo Revisado por pares

Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards “green” bioplastics

2020; Elsevier BV; Volume: 263; Linguagem: Inglês

10.1016/j.chemosphere.2020.128180

ISSN

1879-1298

Autores

Svetlana V. Prudnikova, Светлана Евграфова, Tatiana G. Volova,

Tópico(s)

Microplastics and Plastic Pollution

Resumo

The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic – poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9–11 °C, the total biomass of microorganisms at a 10-20-cm depth was 226–234 mg g−1 soil and CO2 production was 20–46 mg g−1 day−1. The total abundance of microscopic fungi varied between (7.4 ± 2.3) × 103 and (18.3 ± 2.2) × 103 CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 ± 0.1) × 106 CFU g−1 soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique – plating of isolates on the mineral agar with polymer as sole carbon source – was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)-degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi.

Referência(s)
Altmetric
PlumX