Artigo Acesso aberto Revisado por pares

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

2020; Elsevier BV; Volume: 19; Issue: 12 Linguagem: Inglês

10.1074/mcp.ra120.002251

ISSN

1535-9484

Autores

Tricia Rowlison, Timothy P. Cleland, Mary Ann Ottinger, Pierre Comizzoli,

Tópico(s)

Reproductive System and Pregnancy

Resumo

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals. Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals. Mammalian sperm cells undergo structural modifications throughout epididymal transit. This includes sperm membrane changes as well as addition of key surface proteins which are critical in sperm progression through the cumulus cells, binding and crossing of the zona pellucida, and finally binding and fuzing with the oolemma (1Dacheux J.-L. Dacheux F. New insights into epididymal function in relation to sperm maturation.Reproduction. 2014; 147: R27-R42Crossref PubMed Scopus (197) Google Scholar, 2Martin-DeLeon P.A. Epididymal SPAM1 and its impact on sperm function.Mol., and Cell Endo. 2006; 250: 114-121Crossref PubMed Scopus (64) Google Scholar, 3Sullivan R. Saez F. EVs, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Reproduction. 2013; 146: R21-R35Crossref PubMed Scopus (212) Google Scholar, 4Kuo Y.W. Li S.H. Maeda K.I. Gadella B.M. Tsai P.S.J. Roles of the reproductive tract in modifications of the sperm membrane surface.Reprod. Devel. 2016; 62: 337-343Crossref PubMed Scopus (20) Google Scholar, 5Sullivan R. Belleannée C.J. Role of the epididymis in sperm maturation.in: The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge Univ Press, Cambridge, UK2017Crossref Scopus (9) Google Scholar). Sperm composition also progressively evolves in the epididymis with the sequential integration of specific key peptides and microRNA (1Dacheux J.-L. Dacheux F. New insights into epididymal function in relation to sperm maturation.Reproduction. 2014; 147: R27-R42Crossref PubMed Scopus (197) Google Scholar, 3Sullivan R. Saez F. EVs, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Reproduction. 2013; 146: R21-R35Crossref PubMed Scopus (212) Google Scholar, 6Zhou W. De Iuliis G.N. Dun M.D. Nixon B. Characteristics of the epididymal Luminal environment Responsible for Sperm Maturation and Storage.Front. Endo. 2018; 9: 59Crossref PubMed Scopus (110) Google Scholar, 7Belleannée C. Calvo E. Caballero J. Sullivan R. Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis.Biol. Reprod. 2013; 89: 2Crossref PubMed Scopus (131) Google Scholar). The presence of miRNA influences post-transcriptional regulation of gene expression and the mRNA content of sperm cells, which subsequently alter intercellular communication during the embryonic development (7Belleannée C. Calvo E. Caballero J. Sullivan R. Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis.Biol. Reprod. 2013; 89: 2Crossref PubMed Scopus (131) Google Scholar, 8Belleannee C. Legare C. Calvo E. Thimon V. Sullivan R. MicroRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy.Hum. Reprod. 2013; 28: 1455-1467Crossref PubMed Scopus (62) Google Scholar, 9Reilly J.N. McLaughlin E.A. Stanger S.J. Anderson A.L. Hutcheon K. Church K. Mihalas B.P. Tyagi S. Holt J.E. Eamens A.L. Nixon B. Characterisation of mouse EVs reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome.Sci. Rep. 2016; 631794 Crossref PubMed Scopus (142) Google Scholar, 10Sullivan R. EVs: role of extracellular microvesicles in sperm maturation.Front. Biosci. 2016; 8: 106-114Crossref Google Scholar, 11Conine C. Sun F. Song L. Rivera-Perez J. Rando O. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice.bioRxiv. 2018; 311670 Google Scholar). However, compared with small RNAs, proteins have more immediate effects on sperm motility, fertilization, and early embryonic development (1Dacheux J.-L. Dacheux F. New insights into epididymal function in relation to sperm maturation.Reproduction. 2014; 147: R27-R42Crossref PubMed Scopus (197) Google Scholar, 4Kuo Y.W. Li S.H. Maeda K.I. Gadella B.M. Tsai P.S.J. Roles of the reproductive tract in modifications of the sperm membrane surface.Reprod. Devel. 2016; 62: 337-343Crossref PubMed Scopus (20) Google Scholar, 5Sullivan R. Belleannée C.J. Role of the epididymis in sperm maturation.in: The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge Univ Press, Cambridge, UK2017Crossref Scopus (9) Google Scholar, 12Turner R.M. Moving to the beat: a review of mammalian sperm motility regulation.Reprod. Fert. Devel. 2006; 18: 25-38Crossref PubMed Scopus (218) Google Scholar). Where do these proteins originate and how are they integrated by the maturing sperm cell? Classical protein secretion by the epididymal epithelium is achieved through the merocrine pathway in which proteins contain signal sequences and are secreted individually from the epithelium (1Dacheux J.-L. Dacheux F. New insights into epididymal function in relation to sperm maturation.Reproduction. 2014; 147: R27-R42Crossref PubMed Scopus (197) Google Scholar, 13Nicander L. Malmqvist M. Ultrastructural observations suggesting merocrine secretion in the initial segment of the mammalian epididymis.Tissue Cell. 1977; 184: 487-490Google Scholar). Once secreted into the luminal fluid, proteins bind with the sperm surface before being incorporated into the cell. Another secretion pathway has been identified in which proteins without a signal sequence are secreted within membranous vesicles termed, extracellular vesicles (EV), ranging in size from approximately 30–300 nm (3Sullivan R. Saez F. EVs, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Reproduction. 2013; 146: R21-R35Crossref PubMed Scopus (212) Google Scholar, 6Zhou W. De Iuliis G.N. Dun M.D. Nixon B. Characteristics of the epididymal Luminal environment Responsible for Sperm Maturation and Storage.Front. Endo. 2018; 9: 59Crossref PubMed Scopus (110) Google Scholar, 14Hermo L. Jacks D. Nature's ingenuity: bypassing the classical secretory route via apocrine secretion.Mol Reprod Dev. 2002; 63: 394-410Crossref PubMed Scopus (144) Google Scholar, 15Saez F. Frenette G. Sullivan R. EVs and prostasomes: their roles in posttesticular maturation of the sperm cells.Andrology. 2003; 24: 149-154Google Scholar, 16Nixon B. De Iuliis G.N. Hart H.M. Zhou W. Mathe A. Bernstein I. Anderson A.L. Stanger S.J. Skerrett-Byrne D.A. Jamaluddin M.F.B. Almazi J.G. Proteomic profiling of mouse EVs reveals their contributions to post-testicular sperm maturation.Mol. and Cell. Proteomics. 2019; (mcp-RA118)Abstract Full Text Full Text PDF Scopus (90) Google Scholar, 17Théry C. Witwer K.W. Aikawa E. Alcaraz M.J. Anderson J.D. Andriantsitohaina R. Antoniou A. Arab T. Archer F. Atkin-Smith G.K. Ayre D.C. Bach J.-M. Bachurski D. Baharvand H. Balaj L. Baldacchino S. Bauer N.N. Baxter A.A. Bebawy M. Beckham C. Bedina Zavec A. Benmoussa A. Berardi A.C. Bergese P. Bielska E. Blenkiron C. Bobis-Wozowicz S. Boilard E. Boireau W. Bongiovanni A. Borràs F.E. Bosch S. Boulanger C.M. Breakefield X. Breglio A.M. Brennan M.Á. Brigstock D.R. Brisson A. Broekman M.L. Bromberg J.F. Bryl-Górecka P. Buch S. Buck A.H. Burger D. Busatto S. Buschmann D. Bussolati B. Buzás E.I. Byrd J.B. Camussi G. Carter D.R. Caruso S. Chamley L.W. Chang Y.-T. Chen C. Chen S. Cheng L. Chin A.R. Clayton A. Clerici S.P. Cocks A. Cocucci E. Coffey R.J. Cordeiro-da-Silva A. Couch Y. Coumans F.A. Coyle B. Crescitelli R. Criado M.F. D'Souza-Schorey C. Das S. Datta Chaudhuri A. de Candia P. De Santana E.F. De Wever O. Del Portillo H.A. Demaret T. Deville S. Devitt A. Dhondt B. Di Vizio D. Dieterich L.C. Dolo V. Dominguez Rubio A.P. Dominici M. Dourado M.R. Driedonks T.A. Duarte F.V. Duncan H.M. Eichenberger R.M. Ekström K. El Andaloussi S. Elie-Caille C. Erdbrügger U. Falcón-Pérez J.M. Fatima F. Fish J.E. Flores-Bellver M. Försönits A. Frelet-Barrand A. Fricke F. Fuhrmann G. Gabrielsson S. Gámez-Valero A. Gardiner C. Gärtner K. Gaudin R. Gho Y.S. Giebel B. Gilbert C. Gimona M. Giusti I. Goberdhan D.C. Görgens A. Gorski S.M. Greening D.W. Gross J.C. Gualerzi A. Gupta G.N. Gustafson D. Handberg A. Haraszti R.A. Harrison P. Hegyesi H. Hendrix A. Hill A.F. Hochberg F.H. Hoffmann K.F. Holder B. Holthofer H. Hosseinkhani B. Hu G. Huang Y. Huber V. Hunt S. Ibrahim A.G.-E. Ikezu T. Inal J.M. Isin M. Ivanova A. Jackson H.K. Jacobsen S. Jay S.M. Jayachandran M. Jenster G. Jiang L. Johnson S.M. Jones J.C. Jong A. Jovanovic-Talisman T. Jung S. Kalluri R. Kano S.-I. Kaur S. Kawamura Y. Keller E.T. Khamari D. Khomyakova E. Khvorova A. Kierulf P. Kim K.P. Kislinger T. Klingeborn M. Klinke D.J. Kornek M. Kosanović M.M. Kovács Á.F. Krämer-Albers E.-M. Krasemann S. Krause M. Kurochkin I.V. Kusuma G.D. Kuypers S. Laitinen S. Langevin S.M. Languino L.R. Lannigan J. Lässer C. Laurent L.C. Lavieu G. Lázaro-Ibáñez E. Le Lay S. Lee M.-S. Lee Y.X.F. Lemos D.S. Lenassi M. Leszczynska A. Li I.T. Liao K. Libregts S.F. Ligeti E. Lim R. Lim S.K. Linē A. Linnemannstöns K. Llorente A. Lombard C.A. Lorenowicz M.J. Lörincz Á.M. Lötvall J. Lovett J. Lowry M.C. Loyer X. Lu Q. Lukomska B. Lunavat T.R. Maas S.L. Malhi H. Marcilla A. Mariani J. Mariscal J. Martens-Uzunova E.S. Martin-Jaular L. Martinez M.C. Martins V.R. Mathieu M. Mathivanan S. Maugeri M. McGinnis L.K. McVey M.J. Meckes D.G. Meehan K.L. Mertens I. Minciacchi V.R. Möller A. Møller Jørgensen M. Morales-Kastresana A. Morhayim J. Mullier F. Muraca M. Musante L. Mussack V. Muth D.C. Myburgh K.H. Najrana T. Nawaz M. Nazarenko I. Nejsum P. Neri C. Neri T. Nieuwland R. Nimrichter L. Nolan J.P. Nolte-'t Hoen E.N. Noren Hooten N. O'Driscoll L. O'Grady T. O'Loghlen A. Ochiya T. Olivier M. Ortiz A. Ortiz L.A. Osteikoetxea X. Østergaard O. Ostrowski M. Park J. Pegtel D.M. Peinado H. Perut F. Pfaffl M.W. Phinney D.G. Pieters B.C. Pink R.C. Pisetsky D.S. Pogge von Strandmann E. Polakovicova I. Poon I.K. Powell B.H. Prada I. Pulliam L. Quesenberry P. Radeghieri A. Raffai R.L. Raimondo S. Rak J. Ramirez M.I. Raposo G. Rayyan M.S. Regev-Rudzki N. Ricklefs F.L. Robbins P.D. Roberts D.D. Rodrigues S.C. Rohde E. Rome S. Rouschop K.M. Rughetti A. Russell A.E. Saá P. Sahoo S. Salas-Huenuleo E. Sánchez C. Saugstad J.A. Saul M.J. Schiffelers R.M. Schneider R. Schøyen T.H. Scott A. Shahaj E. Sharma S. Shatnyeva O. Shekari F. Shelke G.V. Shetty A.K. Shiba K. Siljander P.R.-M. Silva A.M. Skowronek A. Snyder O.L. Soares R.P. Sódar B.W. Soekmadji C. Sotillo J. Stahl P.D. Stoorvogel W. Stott S.L. Strasser E.F. Swift S. Tahara H. Tewari M. Timms K. Tiwari S. Tixeira R. Tkach M. Toh W.S. Tomasini R. Torrecilhas A.C. Tosar J.P. Toxavidis V. Urbanelli L. Vader P. van Balkom B.W. van der Grein S.G. Van Deun J. van Herwijnen M.J. Van Keuren-Jensen K. van Niel G. van Royen M.E. van Wijnen A.J. Vasconcelos M.H. Vechetti I.J. Veit T.D. Vella L.J. Velot É. Verweij F.J. Vestad B. Viñas J.L. Visnovitz T. Vukman K.V. Wahlgren J. Watson D.C. Wauben M.H. Weaver A. Webber J.P. Weber V. Wehman A.M. Weiss D.J. Welsh J.A. Wendt S. Wheelock A.M. Wiener Z. Witte L. Wolfram J. Xagorari A. Xander P. Xu J. Yan X. Yáñez-Mó M. Yin H. Yuana Y. Zappulli V. Zarubova J. Že˙kas V. Zhang J.-Y. Zhao Z. Zheng L. Zheutlin A.R. Zickler A.M. Zimmermann P. Zivkovic A.M. Zocco D. Zuba-Surma E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.Extracellular Vesicles. 2018; 71535750 Crossref PubMed Scopus (4631) Google Scholar). Epididymal EVs will fuze with the outer plasma membrane before cellular uptake (6Zhou W. De Iuliis G.N. Dun M.D. Nixon B. Characteristics of the epididymal Luminal environment Responsible for Sperm Maturation and Storage.Front. Endo. 2018; 9: 59Crossref PubMed Scopus (110) Google Scholar, 15Saez F. Frenette G. Sullivan R. EVs and prostasomes: their roles in posttesticular maturation of the sperm cells.Andrology. 2003; 24: 149-154Google Scholar, 16Nixon B. De Iuliis G.N. Hart H.M. Zhou W. Mathe A. Bernstein I. Anderson A.L. Stanger S.J. Skerrett-Byrne D.A. Jamaluddin M.F.B. Almazi J.G. Proteomic profiling of mouse EVs reveals their contributions to post-testicular sperm maturation.Mol. and Cell. Proteomics. 2019; (mcp-RA118)Abstract Full Text Full Text PDF Scopus (90) Google Scholar). This type of secretory process has been identified in several species including the mouse (18Rejraji H. Vernet P. Drevet JËl. R. GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations.Mol. Reprod. Dev. 2002; 63: 96-103Crossref PubMed Scopus (78) Google Scholar), rat (19Fornes M.W. Barbieri A. Cavicchia J.C. Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis.Andrology. 2009; 27: 1-5Crossref Scopus (37) Google Scholar), hamster (20Légaré C. Bérubé B. Boué F. Lefièvre L. Morales CR El-Alfy M. Sullivan R. Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein.Mol. Reprod. Dev. 1999; 52: 225-233Crossref PubMed Scopus (76) Google Scholar), bovine (21Frenette G. Sullivan R. Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface.Mol. Reprod. Dev. 2001; 59: 115-121Crossref PubMed Scopus (129) Google Scholar), human (22Thimon V. Frenette G. Saez F. Thabet M. Sullivan R. Protein composition of human EVs collected during surgical vasectomy reversal: a proteomic and genomic approach.Hum. Reprod. 2008; 23: 1698-1707Crossref PubMed Scopus (122) Google Scholar) and cat (23Morales A. Cavicchia J.C. Release of cytoplasmic apical protrusions from principal cells of the cat epididymis, an electron microscopic study.Tissue Cell. 1991; 23: 505-513Crossref PubMed Scopus (27) Google Scholar). Additionally, previous bovine and mouse studies have reported epididymal EV proteins incorporated by the sperm cells in a sequential manner (16Nixon B. De Iuliis G.N. Hart H.M. Zhou W. Mathe A. Bernstein I. Anderson A.L. Stanger S.J. Skerrett-Byrne D.A. Jamaluddin M.F.B. Almazi J.G. Proteomic profiling of mouse EVs reveals their contributions to post-testicular sperm maturation.Mol. and Cell. Proteomics. 2019; (mcp-RA118)Abstract Full Text Full Text PDF Scopus (90) Google Scholar, 24Girouard J. Frenette G. Sullivan R. Comparative proteome and lipid profiles of bovine EVs collected in the intraluminal compartment of the caput and cauda epididymidis.Int. J. Androl. 2011; 34: e475-e486Crossref PubMed Scopus (99) Google Scholar). Using the domestic cat model, our laboratory has been investigating this complex process. We demonstrated that exposing immature sperm cells in vitro to these EVs improved motility and allowed the acquisition of key peptides; thereby contributing to the maturation of the centrosome (25Rowlison T. Ottinger M.A. Comizzoli P. Deciphering the mechanisms involving cenexin, ninein and centriolin in sperm maturation during epididymal transit in the domestic cat.Reprod. Dom. Anim. 2017; 52: 193-196Crossref PubMed Scopus (7) Google Scholar, 26Rowlison T. Ottinger M.A. Comizzoli P. Key factors enhancing sperm fertilizing ability are transferred from the epididymis to the spermatozoa via EVs in the domestic cat model.Assist. Reprod. Genetics. 2018; 35: 221-228Crossref PubMed Scopus (24) Google Scholar). However, the protein profile of epididymal EVs in the domestic cat is not well characterized; elucidating the function of these key factors will contribute to our understanding of sperm maturation processes in mammals. Discerning key proteins contained within EVs is critical to developing interventions for fertilization failure and early embryo loss. This is especially vital for individuals that exhibit teratospermia; a condition in which more than 60% of sperm cells exhibit morphological abnormalities (27Pukazhenthi B.S. Wildt D.E. Howard J.G. The phenomenon and significance of teratospermia in felids.Reprod., and Fert. 2001; 57: 423-433Google Scholar, 28Neubauer K. Jewgenow K. Blottner S. Wildt D.E. Pukazhenthi B.S. Quantity rather than quality in teratospermic males: a histomorphometric and flow cytometric evaluation of spermatogenesis in the domestic cat (Felis catus).Biol. Reprod. 2004; 71: 1517-1524Crossref PubMed Scopus (56) Google Scholar). This condition has been observed in several species, including humans and in wild species (29Pukazhenthi B.S. Neubauer K. Jewgenow K. Howard J. Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives.Theriogenology. 2006; 66: 112-121Crossref PubMed Scopus (115) Google Scholar). Research suggests this condition may result from detrimental membrane modifications during the sperm maturation process, which subsequently hinders spermatozoa structural integrity (30Gutiérrez-Reinoso M.A. García-Herreros M. Normozoospermic versus teratozoospermic domestic cats: differential testicular volume, sperm morphometry, and subpopulation structure during epididymal maturation.Asian J. Androl. 2016; 18: 871-878PubMed Google Scholar, 31Moslemi M.K. Tavanbakhsh S. Selenium–vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate.Intern. Gen. Med. 2011; 4: 99-104Crossref PubMed Scopus (138) Google Scholar). Supporting evidence for this hypothesis are in examples of these modifications observed in humans including acrosome and nuclear abnormalities (32Perdrix A. Travers A. Chelli M.H. Escalier D. Do Rego J.L. Milazzo J.P. Mousset-Simeon N. Mace B. Rives N. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles.Hum. Reprod. 2011; 26: 47-58Crossref PubMed Scopus (97) Google Scholar), resulting in diminished ability of the sperm cell to penetrate the zona pellucida (33Shalgi R. Dor J. Rudak E. Lusky A. Goldman B. Mashiach S. Nebel L. Penetration of sperm from teratospermic men into zona-free hamster eggs.Intern. Androl. 1985; 8: 285-294Crossref PubMed Scopus (14) Google Scholar). This reduced sperm functionality has also been observed in the teratospermic domestic cat (29Pukazhenthi B.S. Neubauer K. Jewgenow K. Howard J. Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives.Theriogenology. 2006; 66: 112-121Crossref PubMed Scopus (115) Google Scholar, 34Howard J. Brown J.L. Bush M. Wildt D.E. Teratospermic and normospermic domestic cats: ejaculate traits, pituitary-gonadal hormones, and improvement of spermatozoal motility and morphology after swim-up processing.Andrology. 1990; 11: 204-215Google Scholar, 35Howard J. Bush M. Wildt D.E. Teratospermia in domestic cats compromises penetration of zona-free hamster ova and cat zonae pellucidae.Andrology. 1991; 12: 36-45Google Scholar). The vast majority of research in cats focused on abnormalities which arise during spermatogenesis, resulting in primary abnormalities, adversely impacting sperm functionality (e.g. micro-, macro-, or polycephalic heads, acrosomal defects, mitochondrial sheath defects, biflagellate or tightly coiled flagellum; 29Pukazhenthi B.S. Neubauer K. Jewgenow K. Howard J. Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives.Theriogenology. 2006; 66: 112-121Crossref PubMed Scopus (115) Google Scholar, 36Chemes H.E. Rawe V.Y. Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men.Human Reprod. Update. 2003; 9: 405-428Crossref PubMed Scopus (203) Google Scholar, 37Müller G. Martino-Andrade A.J. Santos A.S. Reghelin A.L. Garcia D.M. Sant'Ana G.R. Spercoski K.M. Meyer K.B. Torres S.M. Júnior V.S. Morais R.N. Testicular testosterone: estradiol ratio in domestic cats and its relationship to spermatogenesis and epididymal sperm morphology.Therio. 2012; 78: 1224-1234Crossref Scopus (21) Google Scholar, 38Andrews C.J. Thomas D.G. Yapura J. Potter M.A. Reproductive biology of the 38 extant felid species: a review.Mam. Rev. 2019; 49: 16-30Crossref Scopus (17) Google Scholar). Studies on secondary abnormalities are scarcer, rendering it difficult to understand the underlying etiology of these defects (e.g. detached head or flagellum, retained cytoplasmic droplets, bent midpiece or flagellum; 29Pukazhenthi B.S. Neubauer K. Jewgenow K. Howard J. Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives.Theriogenology. 2006; 66: 112-121Crossref PubMed Scopus (115) Google Scholar, 38Andrews C.J. Thomas D.G. Yapura J. Potter M.A. Reproductive biology of the 38 extant felid species: a review.Mam. Rev. 2019; 49: 16-30Crossref Scopus (17) Google Scholar). While not as severe, these secondary abnormalities still greatly diminish sperm quality and overall fertility. Comparing EV protein content of teratospermic males to the normospermic baseline will further elucidate the underlying basis of teratospermia, which is rampant in the 38 species of felids that are listed as threatened or endangered as reported by the International Union for Conservation of Nature (39IUCN Red List of Threatened Species, Version 2020.1.http://www.iucnredlist.orgGoogle Scholar). The domestic cat serves as an ideal model because it is a close relative of wild felids. Furthermore, studies in the domestic cat have improved our basic understanding of human reproductive physiology, including potential physiological sources of teratospermia (40Wildt D.E. Comizzoli P. Pukazhenthi B. Songsasen N. Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health.Mol. Reprod, Devel. 2010; 77: 397-409Crossref PubMed Scopus (91) Google Scholar). The objectives of the study were to (1) characterize and compare protein content of EVs between segments of the cat epididymis, and (2) compare EV protein compositions between normo- and teratospermic adults. All chemicals and reagents were purchased from Sigma Company (St. Louis, MO), unless otherwise stated. The study did not require the approval of the Animal Care and Use Committee of the Smithsonian Conservation Biology Institute because cat testes were collected at local veterinary clinics as byproducts from owner-requested routine orchiectomies. Adult (>1 year) domestic cat testis samples were supplied by local veterinary clinics following routine orchiectomy (n = 20 male tracts total). Tracts were transported and stored in Phosphate Buffered Saline (PBS) at 4 °C until processing within a 24 h period. Epididymal tissues were then removed from the rest of the testis in PBS using a scalpel blade until further processing. A small sample of spermatozoa was isolated by making one 3 mm incision into the distal end of the cauda segment (41Axnér E. Linde-Forsberg C. Einarsson S. Morphology and motility of spermatozoa from different regions of the epididymal duct in the domestic cat.Theriogenology. 1999; 52: 767-778Crossref PubMed Scopus (60) Google Scholar). The sample was then fixed by diluting 1:1 with 4% paraformaldehyde (PFA) and stained with Coomassie Brilliant Blue R-250 (0.1% Coomassie Brilliant Blue R-250, 50% methanol, and 10% glacial acetic acid), then mounted with Permount™ Mounting Medium (Fisher Scientific, Pittsburgh, PA). A proportion of sperm cells were recorded, analyzing 200 cells total per each individual male. Individuals were considered teratospermic if ≥ 60% of cauda sperm cells had a morphological abnormality (34Howard J. Brown J.L. Bush M. Wildt D.E. Teratospermic and normospermic domestic cats: ejaculate traits, pituitary-gonadal hormones, and improvement of spermatozoal motility and morphology after swim-up processing.Andrology. 1990; 11: 204-215Google Scholar). To first assess overall abnormalities in this sample type, sperm cells were isolated from the cauda segment of individuals until a sample size of n = 5 normospermic males, and n = 7 teratospermic males were attained, and the different morphological abnormalities recorded. It should be noted that the prevalence of teratospermia in the samples used in this study does not represent the overall prevalence of the general domestic cat population. A separate set of samples were then assessed for the collection of EVs (n = 4 normospermic males, and n = 4 teratospermic males). EV samples were subsequently collected within an hour to reduce sample loss and protein degradation. Following identification of whether a sample was normospermic or teratospermic, entire epididymides were separated into the different, consecutive, segments (caput, corpus, cauda) (41Axnér E. Linde-Forsberg C. Einarsson S. Morphology and motility of spermatozoa from different regions of the epididymal duct in the domestic cat.Theriogenology. 1999; 52: 767-778Crossref PubMed Scopus (60) Google Scholar) and further minced using a scalpel blade in PBS (n = 4 normospermic males, and n = 4 teratospermic males). Luminal fluid was allowed to seep for 5–10 min before collected into microcentrifuge tubes. Cell debris was discarded from the supernatant by a series of centrifugations at 700 × g for 10 min and 3000 × g for 10 min at room temperature, with the supernatant transferred to a new microcentrifuge tube following each centrifugation. The EV fraction was isolated from the remaining luminal fluid by ultracentrifugation at 100,000 × g for 2 h at 4 °C and re-suspended in fresh PBS (Beckman Coulter Optima l-90K, SW 55 Ti rotor, 3.5 ml polycarbonate tubes catalog number: 349622, filled to 3 ml each, with full dynamic braking to 0 rpm, Kadj = 88). Aliquots of EV samples were then stored at −20 °C. Samples were processed, and analyzed via MS (described below) within one month's time. Successful isolation of EVs was previously confirmed via observations performed using a transmission electron microscope (Zeiss 10 CA Transmission Electron Microscope) at the University of Maryland Laboratory for Biological Ultrastructure (26Rowlison T. Ottinger M.A. Comizzoli P. Key factors enhancing sperm fertilizing ability are transferred from the epididymis to the spermatozoa via EVs in the domestic cat model.Assist. Reprod. Genetics. 2018; 35: 221-228Crossref PubMed Scopus (24) Google Scholar). All relevant data of collection may be found in the EV-TRACK knowledgebase EV-TRACK ID: EV200074, https://evtrack.org/. It should be noted that this study is using the operative term, Extracellular Vesicle (EV), in accordance to the guidelines set forth by the International Society for Extracellular Vesicles (17Théry C. Witwer K.W. Aikawa E. Alcaraz M.J. Anderson J.D. Andriantsitohaina R. Antoniou A. Arab T. Archer F. Atkin-Smith G.K. Ayre D.C. Bach J.-M. Bachurski D. Baharvand H. Balaj L. Baldacchino S. Bauer N.N. Baxter A.A. Bebawy M. Beckham C. Bedina Zavec A. Benmoussa A. Berardi A.C. Bergese P. Bielska E. Blenkiron C. Bobis-Wozowicz S. Boilard E. Boireau W. Bongiovanni A. Borràs F.E. Bosch S. Boulanger C.M. Breakefield X. Breglio A.M. Brennan M.Á. Brigstock D.R. Brisson A. Broekman M.L. Bromberg J.F. Bryl-Górecka P. Buch S. Buck A.H. Burger D. Busatto S. Buschmann D. Bussolati B. Buzás E.I. Byrd J.B. Camussi G. Carter D.R. Caruso S. Chamley L.W. Chang Y.-T. Chen C. Chen S. Cheng L. Chin A.R. Clayton A. Clerici S.P. Cocks A. Cocucci E. Coffey R.J. Cordeiro-da-Silva A. Couch Y. Coumans F.A. Coyle B. Crescitelli R. Criado M.F. D'Souza-Schorey C. Das S. Datta Chaudhuri A. de Candia P. De Santana E.F

Referência(s)