Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases
2020; Elsevier BV; Volume: 295; Issue: 50 Linguagem: Inglês
10.1074/jbc.ra120.014625
ISSN1083-351X
AutoresBhargavi M. Boruah, Renuka Kadirvelraj, Lin Liu, Annapoorani Ramiah, Chao Li, Guanghui Zong, Gerlof P. Bosman, Jeong‐Yeh Yang, Lai‐Xi Wang, Geert‐Jan Boons, Zachary A. Wood, Kelley W. Moremen,
Tópico(s)Monoclonal and Polyclonal Antibodies Research
ResumoMammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems. Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown. Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems. Glycan structures on cell surface and secreted glycoproteins contribute to numerous interactions with the extracellular environment (1Barb A.W. Meng L. Gao Z. Johnson R.W. Moremen K.W. Prestegard J.H. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation.Biochemistry. 2012; 51 (22574931): 4618-462610.1021/bi300319qCrossref PubMed Scopus (88) Google Scholar, 2Varki A. Biological roles of oligosaccharides: all of the theories are correct.Glycobiology. 1993; 3 (8490246): 97-13010.1093/glycob/3.2.97Crossref PubMed Google Scholar, 3Varki A. Biological roles of glycans.Glycobiology. 2017; 27 (27558841): 3-4910.1093/glycob/cww086Crossref PubMed Scopus (751) Google Scholar). Nonreducing terminal glycan structures commonly serve as binding sites for protein interactions (4Cummings R.D. Pierce J.M. The challenge and promise of glycomics.Chem. Biol. 2014; 21 (24439204): 1-1510.1016/j.chembiol.2013.12.010Abstract Full Text Full Text PDF PubMed Google Scholar) and, in some instances, modifications to the glycan core structure can also modulate protein function by influencing interactions with binding partners or altering biological dynamics and function (5Li W. Yu R. Ma B. Yang Y. Jiao X. Liu Y. Cao H. Dong W. Liu L. Ma K. Fukuda T. Liu Q. Ma T. Wang Z. Gu J. et al.Core fucosylation of IgG B cell receptor is required for antigen recognition and antibody production.J. Immunol. 2015; 194 (25694612): 2596-260610.4049/jimmunol.1402678Crossref PubMed Scopus (44) Google Scholar, 6Shields R.L. Lai J. Keck R. O'Connell L.Y. Hong K. Meng Y.G. Weikert S.H. Presta L.G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity.J. Biol. Chem. 2002; 277 (11986321): 26733-2674010.1074/jbc.M202069200Abstract Full Text Full Text PDF PubMed Scopus (1221) Google Scholar, 7Subedi G.P. Falconer D.J. Barb A.W. Carbohydrate-polypeptide contacts in the antibody receptor CD16A identified through solution NMR spectroscopy.Biochemistry. 2017; 56 (28613884): 3174-317710.1021/acs.biochem.7b00392Crossref PubMed Scopus (22) Google Scholar, 8Iijima J. Kobayashi S. Kitazume S. Kizuka Y. Fujinawa R. Korekane H. Shibata T. Saitoh S.I. Akashi-Takamura S. Miyake K. Miyoshi E. Taniguchi N. Core fucose is critical for CD14-dependent Toll-like receptor 4 signaling.Glycobiology. 2017; 27 (28973141): 1006-101510.1093/glycob/cwx075Crossref PubMed Scopus (17) Google Scholar, 9Li W. Ishihara K. Yokota T. Nakagawa T. Koyama N. Jin J. Mizuno-Horikawa Y. Wang X. Miyoshi E. Taniguchi N. Kondo A. Reduced alpha4beta1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in alpha1,6-fucosyltransferase deficient mice.Glycobiology. 2008; 18 (17913729): 114-12410.1093/glycob/cwm107Crossref PubMed Scopus (0) Google Scholar, 10Liang W. Mao S. Sun S. Li M. Li Z. Yu R. Ma T. Gu J. Zhang J. Taniguchi N. Li W. Core fucosylation of the T cell receptor is required for T cell activation.Front. Immunol. 2018; 9 (29434598): 7810.3389/fimmu.2018.00078Crossref PubMed Scopus (22) Google Scholar, 11Matsumoto K. Yokote H. Arao T. Maegawa M. Tanaka K. Fujita Y. Shimizu C. Hanafusa T. Fujiwara Y. Nishio K. N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor.Cancer Sci. 2008; 99 (18754874): 1611-161710.1111/j.1349-7006.2008.00847.xCrossref PubMed Scopus (59) Google Scholar, 12Nakayama K. Wakamatsu K. Fujii H. Shinzaki S. Takamatsu S. Kitazume S. Kamada Y. Takehara T. Taniguchi N. Miyoshi E. Core fucose is essential glycosylation for CD14-dependent Toll-like receptor 4 and Toll-like receptor 2 signalling in macrophages.J. Biochem. 2019; 165 (30445455): 227-23710.1093/jb/mvy098Crossref PubMed Scopus (9) Google Scholar, 13Pinho S.S. Seruca R. Gärtner F. Yamaguchi Y. Gu J. Taniguchi N. Reis C.A. Modulation of E-cadherin function and dysfunction by N-glycosylation.Cell Mol. Life Sci. 2011; 68 (21104290): 1011-102010.1007/s00018-010-0595-0Crossref PubMed Scopus (109) Google Scholar, 14Wang X. Gu J. Ihara H. Miyoshi E. Honke K. Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling.J. Biol. Chem. 2006; 281 (16316986): 2572-257710.1074/jbc.M510893200Abstract Full Text Full Text PDF PubMed Scopus (234) Google Scholar, 15Zhao Y. Itoh S. Wang X. Isaji T. Miyoshi E. Kariya Y. Miyazaki K. Kawasaki N. Taniguchi N. Gu J. Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions.J. Biol. Chem. 2006; 281 (17043354): 38343-3835010.1074/jbc.M608764200Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 16Manabe Y. Marchetti R. Takakura Y. Nagasaki M. Nihei W. Takebe T. Tanaka K. Kabayama K. Chiodo F. Hanashima S. Kamada Y. Miyoshi E. Dulal H.P. Yamaguchi Y. Adachi Y. et al.The core fucose on an IgG antibody is an endogenous ligand of Dectin-1.Angew. Chem. Int. Ed. Engl. 2019; 58 (31625659): 18697-1870210.1002/anie.201911875Crossref PubMed Scopus (0) Google Scholar, 17Falconer D.J. Subedi G.P. Marcella A.M. Barb A.W. Antibody fucosylation lowers the FcγRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan.ACS Chem. Biol. 2018; 13 (30016589): 2179-218910.1021/acschembio.8b00342Crossref PubMed Scopus (30) Google Scholar). The contributions of fucose (Fuc) residues are unique among the various glycan epitopes that influence glycoprotein function (18Schneider M. Al-Shareffi E. Haltiwanger R.S. Biological functions of fucose in mammals.Glycobiology. 2017; 27 (28430973): 601-61810.1093/glycob/cwx034Crossref PubMed Scopus (120) Google Scholar). In mammalian cells, Fuc residues are found in four discrete contexts based on linkages to either peptide domains or glycan structures (18Schneider M. Al-Shareffi E. Haltiwanger R.S. Biological functions of fucose in mammals.Glycobiology. 2017; 27 (28430973): 601-61810.1093/glycob/cwx034Crossref PubMed Scopus (120) Google Scholar) and each is generated by a separate enzyme family that is distinguished by its CAZy classification (19Lombard V. Golaconda Ramulu H. Drula E. Coutinho P.M. Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42 (24270786): D490-D49510.1093/nar/gkt1178Crossref PubMed Scopus (3224) Google Scholar). Fuc residues can be attached directly to Ser/Thr side chains on EGF or thrombospondin repeat domains through the action of POFUT1 (CAZY GT65) and POFUT2 (GT68), respectively (18Schneider M. Al-Shareffi E. Haltiwanger R.S. Biological functions of fucose in mammals.Glycobiology. 2017; 27 (28430973): 601-61810.1093/glycob/cwx034Crossref PubMed Scopus (120) Google Scholar, 20Lira-Navarrete E. Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation.Acta Crystallogr. F Struct. Biol. Commun. 2018; 74 (30084393): 443-45010.1107/S2053230X18004788Crossref PubMed Scopus (6) Google Scholar), which influence protein folding and quality control of the domains in the endoplasmic reticulum (designations here and below employ human gene terminology). Modifications of N- and O-glycoproteins and glycolipids with Fuc-α1,2-Gal linkages by FUT1 and FUT2 (GT11) can create H-antigens as precursors for ABO blood group structures (18Schneider M. Al-Shareffi E. Haltiwanger R.S. Biological functions of fucose in mammals.Glycobiology. 2017; 27 (28430973): 601-61810.1093/glycob/cwx034Crossref PubMed Scopus (120) Google Scholar, 21Scharberg E.A. Olsen C. Bugert P. The H blood group system.Immunohematology. 2016; 32 (27834485): 112-118Crossref PubMed Google Scholar, 22Stowell C.P. Stowell S.R. Biologic roles of the ABH and Lewis histo-blood group antigens part I: infection and immunity.Vox Sang. 2019; 114 (31070258): 426-44210.1111/vox.12787Crossref PubMed Scopus (18) Google Scholar, 23Lowe J.B. The blood group-specific human glycosyltransferases.Baillieres Clin. Haematol. 1993; 6 (8043935): 465-49210.1016/S0950-3536(05)80155-6Abstract Full Text PDF PubMed Google Scholar). Terminal Fuc-α1,3/4-GlcNAc linkages are generated by GT10 fucosyltransferases to form Lewis antigen structures important in immune and inflammatory responses and vertebrate development (24Costache M. Cailleau A. Fernandez-Mateos P. Oriol R. Mollicone R. Advances in molecular genetics of alpha-2- and alpha-3/4-fucosyltransferases.Transfus. Clin. Biol. 1997; 4 (9269717): 367-38210.1016/S1246-7820(97)80042-0Crossref PubMed Scopus (0) Google Scholar, 25Ma B. Simala-Grant J.L. Taylor D.E. Fucosylation in prokaryotes and eukaryotes.Glycobiology. 2006; 16 (16973733): 158R-184R10.1093/glycob/cwl040Crossref PubMed Scopus (292) Google Scholar). Finally, N-glycan structures can be modified by α1,6-Fuc addition to the innermost GlcNAc residue (core fucosylation) catalyzed by FUT8 (GT23) (18Schneider M. Al-Shareffi E. Haltiwanger R.S. Biological functions of fucose in mammals.Glycobiology. 2017; 27 (28430973): 601-61810.1093/glycob/cwx034Crossref PubMed Scopus (120) Google Scholar, 26Ihara H. Tsukamoto H. Gu J. Miyoshi E. Taniguchi N. Ikeda Y. Fucosyltransferase 8: GDP-fucose N-glycan core α6-fucosyltransferase (FUT8).in: Taniguchi N. Honke K. Fukuda M. Narimatsu H. Yamaguchi Y. Angata T. Handbook of Glycosyltransferases and Related Genes. 2nd Ed. Springer, Tokyo, Japan2014: 581-596Crossref Scopus (8) Google Scholar, 27Kizuka Y. Taniguchi N. Enzymes for N-glycan branching and their genetic and nongenetic regulation in cancer.Biomolecules. 2016; 6: 2510.3390/biom6020025Crossref PubMed Google Scholar, 28Nagae M. Yamaguchi Y. Taniguchi N. Kizuka Y. 3D structure and function of glycosyltransferases involved in N-glycan maturation.Int. J. Mol. Sci. 2020; 21: 43710.3390/ijms21020437Crossref Scopus (6) Google Scholar). Two additional fucosyltransferase families have also been identified in nonmammalian systems (CAZy families GT37 and GT74 (29Rocha J. Ciceron F. de Sanctis D. Lelimousin M. Chazalet V. Lerouxel O. Breton C. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into Xyloglucan fucosylation.Plant Cell. 2016; 28 (27637560): 2352-236410.1105/tpc.16.00519Crossref PubMed Scopus (20) Google Scholar, 30Urbanowicz B.R. Bharadwaj V.S. Alahuhta M. Peña M.J. Lunin V.V. Bomble Y.J. Wang S. Yang J.Y. Tuomivaara S.T. Himmel M.E. Moremen K.W. York W.S. Crowley M.F. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism.Plant J. 2017; 91 (28670741): 931-94910.1111/tpj.13628Crossref PubMed Scopus (29) Google Scholar, 31Van Der Wel H. Fisher S.Z. West C.M. A bifunctional diglycosyltransferase forms the Fucα1,2Galβ1,3-disaccharide on Skp1 in the cytoplasm of dictyostelium.J. Biol. Chem. 2002; 277 (12244067): 46527-4653410.1074/jbc.M208824200Abstract Full Text Full Text PDF PubMed Scopus (36) Google Scholar)). Structures for several of the FUT family members have been determined (20Lira-Navarrete E. Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation.Acta Crystallogr. F Struct. Biol. Commun. 2018; 74 (30084393): 443-45010.1107/S2053230X18004788Crossref PubMed Scopus (6) Google Scholar, 29Rocha J. Ciceron F. de Sanctis D. Lelimousin M. Chazalet V. Lerouxel O. Breton C. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into Xyloglucan fucosylation.Plant Cell. 2016; 28 (27637560): 2352-236410.1105/tpc.16.00519Crossref PubMed Scopus (20) Google Scholar, 30Urbanowicz B.R. Bharadwaj V.S. Alahuhta M. Peña M.J. Lunin V.V. Bomble Y.J. Wang S. Yang J.Y. Tuomivaara S.T. Himmel M.E. Moremen K.W. York W.S. Crowley M.F. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism.Plant J. 2017; 91 (28670741): 931-94910.1111/tpj.13628Crossref PubMed Scopus (29) Google Scholar, 32Moremen K.W. Haltiwanger R.S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans.Nat. Chem. Biol. 2019; 15 (31427814): 853-86410.1038/s41589-019-0350-2Crossref PubMed Scopus (36) Google Scholar, 33Lira-Navarrete E. Valero-González J. Villanueva R. Martínez-Júlvez M. Tejero T. Merino P. Panjikar S. Hurtado-Guerrero R. Structural insights into the mechanism of protein O-fucosylation.PLoS ONE. 2011; 6 (21966509)e2536510.1371/journal.pone.0025365Crossref PubMed Scopus (66) Google Scholar, 34Sun H.Y. Lin S.W. Ko T.P. Pan J.F. Liu C.L. Lin C.N. Wang A.H. Lin C.H. Structure and mechanism of Helicobacter pylori fucosyltransferase: a basis for lipopolysaccharide variation and inhibitor design.J. Biol. Chem. 2007; 282 (17251184): 9973-998210.1074/jbc.M610285200Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, 35Brzezinski K. Dauter Z. Jaskolski M. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose.Acta Crystallogr. D Biol. Crystallogr. 2012; 68 (22281745): 160-16810.1107/S0907444911053157Crossref PubMed Scopus (14) Google Scholar, 36Ihara H. Ikeda Y. Toma S. Wang X. Suzuki T. Gu J. Miyoshi E. Tsukihara T. Honke K. Matsumoto A. Nakagawa A. Taniguchi N. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8.Glycobiology. 2007; 17 (17172260): 455-46610.1093/glycob/cwl079Crossref PubMed Scopus (82) Google Scholar, 37McMillan B.J. Zimmerman B. Egan E.D. Lofgren M. Xu X. Hesser A. Blacklow S.C. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations.Glycobiology. 2017; 27 (28334865): 777-78610.1093/glycob/cwx020Crossref PubMed Scopus (23) Google Scholar, 38Li Z. Han K. Pak J.E. Satkunarajah M. Zhou D. Rini J.M. Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1.Nat. Chem. Biol. 2017; 13 (28530709): 757-76310.1038/nchembio.2381Crossref PubMed Scopus (33) Google Scholar, 39Valero-Gonzalez J. Leonhard-Melief C. Lira-Navarrete E. Jimenez-Oses G. Hernandez-Ruiz C. Pallares M.C. Yruela I. Vasudevan D. Lostao A. Corzana F. Takeuchi H. Haltiwanger R.S. Hurtado-Guerrero R. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2.Nat. Chem. Biol. 2016; 12 (26854667): 240-24610.1038/nchembio.2019Crossref PubMed Scopus (0) Google Scholar, 40Chen C.I. Keusch J.J. Klein D. Hess D. Hofsteenge J. Gut H. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation.EMBO J. 2012; 31 (22588082): 3183-319710.1038/emboj.2012.143Crossref PubMed Scopus (37) Google Scholar, 41García-García A. Ceballos-Laita L. Serna S. Artschwager R. Reichardt N.C. Corzana F. Hurtado-Guerrero R. Structural basis for substrate specificity and catalysis of alpha1,6-fucosyltransferase.Nat. Commun. 2020; 11 (32080177): 97310.1038/s41467-020-14794-zCrossref PubMed Scopus (0) Google Scholar, 42Järva M.A. Dramicanin M. Lingford J.P. Mao R. John A. Jarman K.E. Grinter R. Goddard-Borger E.D. Structural basis of substrate recognition and catalysis by fucosyltransferase 8.J. Biol. Chem. 2020; 295: 6677-668810.1074/jbc.RA120.013291Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar) and all are GT-B fold catalytic domains (32Moremen K.W. Haltiwanger R.S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans.Nat. Chem. Biol. 2019; 15 (31427814): 853-86410.1038/s41589-019-0350-2Crossref PubMed Scopus (36) Google Scholar, 43Lairson L.L. Henrissat B. Davies G.J. Withers S.G. Glycosyltransferases: structures, functions, and mechanisms.Annu. Rev. Biochem. 2008; 77 (18518825): 521-55510.1146/annurev.biochem.76.061005.092322Crossref PubMed Scopus (1129) Google Scholar) comprised of two adjacent Rossmann-folds with active sites found in the cleft between the two domains. The roles of core fucosylation by FUT8 are diverse. FUT8 gene disruption in mice causes postnatal semi-lethality with emphysema-like changes in the lungs and extracellular matrix destruction (44Wang X. Inoue S. Gu J. Miyoshi E. Noda K. Li W. Mizuno-Horikawa Y. Nakano M. Asahi M. Takahashi M. Uozumi N. Ihara S. Lee S.H. Ikeda Y. Yamaguchi Y. et al.Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (16236725): 15791-1579610.1073/pnas.0507375102Crossref PubMed Scopus (312) Google Scholar, 45Wang X. Gu J. Miyoshi E. Honke K. Taniguchi N. Phenotype changes of Fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s).Methods Enzymol. 2006; 417 (17132494): 11-2210.1016/S0076-6879(06)17002-0Crossref PubMed Scopus (51) Google Scholar), severe growth retardation (14Wang X. Gu J. Ihara H. Miyoshi E. Honke K. Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling.J. Biol. Chem. 2006; 281 (16316986): 2572-257710.1074/jbc.M510893200Abstract Full Text Full Text PDF PubMed Scopus (234) Google Scholar), defects in antigen presentation and immune response (5Li W. Yu R. Ma B. Yang Y. Jiao X. Liu Y. Cao H. Dong W. Liu L. Ma K. Fukuda T. Liu Q. Ma T. Wang Z. Gu J. et al.Core fucosylation of IgG B cell receptor is required for antigen recognition and antibody production.J. Immunol. 2015; 194 (25694612): 2596-260610.4049/jimmunol.1402678Crossref PubMed Scopus (44) Google Scholar), aberrant B-cell development (9Li W. Ishihara K. Yokota T. Nakagawa T. Koyama N. Jin J. Mizuno-Horikawa Y. Wang X. Miyoshi E. Taniguchi N. Kondo A. Reduced alpha4beta1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in alpha1,6-fucosyltransferase deficient mice.Glycobiology. 2008; 18 (17913729): 114-12410.1093/glycob/cwm107Crossref PubMed Scopus (0) Google Scholar), defects in T-cell receptor signaling (10Liang W. Mao S. Sun S. Li M. Li Z. Yu R. Ma T. Gu J. Zhang J. Taniguchi N. Li W. Core fucosylation of the T cell receptor is required for T cell activation.Front. Immunol. 2018; 9 (29434598): 7810.3389/fimmu.2018.00078Crossref PubMed Scopus (22) Google Scholar, 46Fujii H. Shinzaki S. Iijima H. Wakamatsu K. Iwamoto C. Sobajima T. Kuwahara R. Hiyama S. Hayashi Y. Takamatsu S. Uozumi N. Kamada Y. Tsujii M. Taniguchi N. Takehara T. et al.Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice, is increased in patients with inflammatory bowel disease.Gastroenterology. 2016; 150 (26965517): 1620-163210.1053/j.gastro.2016.03.002Abstract Full Text Full Text PDF PubMed Scopus (46) Google Scholar) impaired synaptic plasticity (47Gu W. Fukuda T. Isaji T. Hang Q. Lee H.H. Sakai S. Morise J. Mitoma J. Higashi H. Taniguchi N. Yawo H. Oka S. Gu J. Loss of α1,6-fucosyltransferase decreases hippocampal long term potentiation: implications for core fucosylation in the regulation of AMPA receptor heteromerization and cellular signaling.J. Biol. Chem. 2015; 290 (25979332): 17566-1757510.1074/jbc.M114.579938Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar), schizophrenia-like symptoms (48Fukuda T. Hashimoto H. Okayasu N. Kameyama A. Onogi H. Nakagawasai O. Nakazawa T. Kurosawa T. Hao Y. Isaji T. Tadano T. Narimatsu H. Taniguchi N. Gu J. α1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems.J. Biol. Chem. 2011; 286 (21471224): 18434-1844310.1074/jbc.M110.172536Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar), and enhanced neuroinflammation (49Lu X. Zhang D. Shoji H. Duan C. Zhang G. Isaji T. Wang Y. Fukuda T. Gu J. Deficiency of α1,6-fucosyltransferase promotes neuroinflammation by increasing the sensitivity of glial cells to inflammatory mediators.Biochim. Biophys. Acta. 2019; 1863 (30572004): 598-60810.1016/j.bbagen.2018.12.008Crossref Scopus (3) Google Scholar). Patients with FUT8-CDG harboring defects in the FUT8 gene also present a similar spectrum of clinical symptoms (50Ng B.G. Dastsooz H. Silawi M. Habibzadeh P. Jahan S.B. Fard M.A.F. Halliday B.J. Raymond K. Ruzhnikov M.R.Z. Tabatabaei Z. Taghipour-Sheshdeh A. Brimble E. Robertson S.P. Faghihi M.A. Freeze H.H. Expanding the molecular and clinical phenotypes of FUT8-CDG.J. Inherit. Metab. Dis. 2020; 43 (32049367): 871-87910.1002/jimd.12221Crossref PubMed Scopus (3) Google Scholar, 51Ng B.G. Xu G. Chandy N. Steyermark J. Shinde D.N. Radtke K. Raymond K. Lebrilla C.B. AlAsmari A. Suchy S.F. Powis Z. Faqeih E.A. Berry S.A. Kronn D.F. Freeze H.H. Biallelic mutations in FUT8 cause a congenital disorder of glycosylation with defective fucosylation.Am. J. Hum. Genet. 2018; 102 (29304374): 188-19510.1016/j.ajhg.2017.12.009Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar). An increase in core fucosylation has also been reported in numerous cancers (52Chen C.Y. Jan Y.H. Juan Y.H. Yang C.J. Huang M.S. Yu C.J. Yang P.C. Hsiao M. Hsu T.L. Wong C.H. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23267084): 630-63510.1073/pnas.1220425110Crossref PubMed Scopus (151) Google Scholar, 53Höti N. Yang S. Hu Y. Shah P. Haffner M.C. Zhang H. Overexpression of α(1,6)-fucosyltransferase in the development of castration-resistant prostate cancer cells.Prostate Cancer Prostatic Dis. 2018; 21 (29339807): 137-14610.1038/s41391-017-0016-7Crossref PubMed Scopus (10) Google Scholar, 54Hutchinson W.L. Du M.Q. Johnson P.J. Williams R. Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis.Hepatology. 1991; 13 (1849114): 683-68810.1002/hep.1840130412Crossref PubMed Google Scholar, 55Ito Y. Miyauchi A. Yoshida H. Uruno T. Nakano K. Takamura Y. Miya A. Kobayashi K. Yokozawa T. Matsuzuka F. Taniguchi N. Matsuura N. Kuma K. Miyoshi E. Expression of α1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation.Cancer Lett. 2003; 200 (14568171): 167-17210.1016/S0304-3835(03)00383-5Crossref PubMed Scopus (68) Google Scholar, 56Liu Y.C. Yen H.Y. Chen C.Y. Chen C.H. Cheng P.F. Juan Y.H. Chen C.H. Khoo K.H. Yu C.J. Yang P.C. Hsu T.L. Wong C.H. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21709263): 11332-1133710.1073/pnas.1107385108Crossref PubMed Scopus (233) Google Scholar, 57Muinelo-Romay L. Vazquez-Martín C. Villar-Portela S. Cuevas E. Gil-Martín E. Fernández-Briera A. Expression and enzyme activity of α(1,6)fucosyltransferase in human colorectal cancer.Int. J. Cancer. 2008; 123 (18491404): 641-64610.1002/ijc.23521Crossref PubMed Scopus (0) Google Scholar, 58Shao K. Chen Z.Y. Gautam S. Deng N.H. Zhou Y. Wu X.Z. Posttranslational modification of E-cadherin by core fucosylation regulates Src activation and induces epithelial-mesenchymal transition-like process in lung cancer cells.Glycobiology. 2016; 26 (26443198): 142-15410.1093/glycob/cwv089Crossref PubMed Scopus (30) Google Scholar, 59Tada K. Ohta M. Hidano S. Watanabe K. Hirashita T. Oshima Y. Fujnaga A. Nakanuma H. Masuda T. Endo Y. Takeuchi Y. Iwashita Y. Kobayashi T. Inomata M. Fucosyltransferase 8 plays a crucial role in the invasion and metastasis of pancreatic ductal adenocarcinoma.Surg. Today. 2020; 50: 767-77710.1007/s00595-019-01953-zCrossref PubMed Scopus (2) Google Scholar, 60Takahashi T. Ikeda Y. Miyoshi E. Yaginuma Y. Ishikawa M. Taniguchi N. α1,6-Fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas.Int. J. Cancer. 2000; 88: 914-91910.1002/1097-0215(20001215)88:6 3.0.CO;2-1Crossref PubMed Scopus (0) Google Scholar, 61Tu C.F. Wu M.Y. Lin Y.C. Kannagi R. Yang R.B. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation.Breast Cancer Res. 2017; 19 (28982386): 11110.1186/s13058-017-0904-8Crossref PubMed Scopus (68) Google Scholar, 62Wang X. Chen J. Li Q.K. Peskoe S.B. Zhang B. Choi C. Platz E.A. Zhang H. Overexpression of α(1,6)-fucosyltransferase associated with aggressive prostate cancer.Glycobiology. 2014; 24 (24906821): 935-94410.1093/glycob/cwu051Crossref PubMed Scopus (0) Google Scholar, 63Wang Y. Fukuda T. Isaji T. Lu J. Im S. Hang Q. Gu W. Hou S. Ohtsubo K. Gu J. Loss of α1,6-fucosyltransferase inhibits chemical-induced hepatocellular carcinoma and tumorigenesis by down-regulating several cell signaling pathways.FASEB J. 2015; 29 (25873065): 3217-322710.1096/fj.15-270710Crossref PubMed Scopus (48) Google Scholar) and secreted glycoprotein cancer biomarkers containing elevated core fucosylation have been developed (64Aoyagi Y. Isokawa O. Suda T. Watanabe M. Suzuki Y. Asakura H. The fucosylation index of α-fetoprotein as a possible prognostic indicator for patients with hepatocellular carcinoma.Cancer. 1998; 83 (9827711): 2076-208210.1002/(SICI)1097-0142(19981115)83:10 3.0.CO;2-LCrossref PubMed Scopus (0) Google Scholar, 65Flores A. Marrero J.A. Emerging trends in hepatocellular carcinoma: focus on diagnosis and therapeutics.Clin. Med. Insights Oncol. 2014; 8 (24899827): 71-7610.4137/CMO.S9926Crossref PubMed Scopus (119) Google Scholar, 66Saldova R. Fan Y. Fitzpatrick J.M. Watson R.W. Rudd P.M. Core fucosylation and α-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia.Glycobiology. 2011; 21 (20861084): 195-20510.1093/glycob/cwq147Crossref PubMed Scopus (0) Google Scholar). Numerous approaches for generation of nonfucosylated antibodies are also being pursued through glycoengineering to improve IgG-FcγR interactions as next-generation therapeutics (67Luo C. Chen S. Xu N. Wang C. Sai W.B. Zhao W. Li Y.C. Hu X.J. Tian H. Gao X.D. Yao W.B. Glycoengineering of pertuzumab and its impact on the pharmacokinetic/pharmacodynamic properties.Sci. Rep. 2017; 7 (28397880)4634710.1038/srep46347Crossref PubMed Scopus (13) Google Scholar, 68Satoh M. Iida S. Shitara K. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies.Expert Opin. Biol. Ther. 2006; 6 (17049014): 1161-117310.1517/14712598.6.11.1161Crossref PubMed Scopus (141) Google Scholar). Given the high impact of core fucosylation in animal systems, we have pursued structural and kinetic studies to determine the molecular basis for substrate recognition and catalysis by FUT8. Numerous FUT8 substrate
Referência(s)