Murine GFP-Mx1 forms nuclear condensates and associates with cytoplasmic intermediate filaments: Novel antiviral activity against VSV
2020; Elsevier BV; Volume: 295; Issue: 52 Linguagem: Inglês
10.1074/jbc.ra120.015661
ISSN1083-351X
AutoresPravin B. Sehgal, Huijuan Yuan, Mia F. Scott, Yan Deng, Feng‐Xia Liang, Andrzej Maćkiewicz,
Tópico(s)RNA modifications and cancer
ResumoType I and III interferons induce expression of the "myxovirus resistance proteins" MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles ("biomolecular condensates"). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40–50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20–30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV. Type I and III interferons induce expression of the "myxovirus resistance proteins" MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles ("biomolecular condensates"). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40–50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20–30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV. Membraneless organelles (MLOs) in the cytoplasm and nucleus formed by liquid-liquid phase-separation (LLPS) biomolecular condensates are increasingly viewed as critical in regulating diverse cellular functions (1Mitrea D.M. Kriwacki R.W. Phase separation in biology, functional organization of a higher order.Cell Commun. Signal. 2016; 14 (26727894): 110.1186/s12964-015-0125-7Crossref PubMed Scopus (277) Google Scholar, 2Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225081): 285-29810.1038/nrm.2017.7Crossref PubMed Scopus (1348) Google Scholar, 3Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357 (28935776)eaaf438210.1126/science.aaf4382Crossref PubMed Scopus (925) Google Scholar, 4Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter.J. Cell Sci. 2017; 130 (28808090): 2789-279610.1242/jcs.200295Crossref PubMed Scopus (79) Google Scholar, 5Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294 (30045872): 7115-712710.1074/jbc.TM118.001192Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 6Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell. 2019; 176 (30682370): 419-43410.1016/j.cell.2018.12.035Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, 7Bracha D. Walls M.T. Wei M.-T. Zhu L. Kurian M. Avalos J.L. Toettcher J.E. Brangwynne C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerized seeds.Cell. 2018; 175 (30500534): 1467-148010.1016/j.cell.2018.10.048Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 8Elbaum-Garfinkle S. Matter over mind: liquid phase-separation and neurodegeneration.J. Biol. Chem. 2019; 294 (30914480): 7160-716810.1074/jbc.REV118.001188Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar). These functions include cell differentiation, cell signaling, immune synapse function, nuclear transcription, RNA splicing and processing, mRNA storage and translation, virus replication and maturation, antiviral mechanisms, DNA sensing, synaptic transmission, protein turnover, and mitosis (reviewed in Refs. 1Mitrea D.M. Kriwacki R.W. Phase separation in biology, functional organization of a higher order.Cell Commun. Signal. 2016; 14 (26727894): 110.1186/s12964-015-0125-7Crossref PubMed Scopus (277) Google Scholar, 2Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225081): 285-29810.1038/nrm.2017.7Crossref PubMed Scopus (1348) Google Scholar, 3Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357 (28935776)eaaf438210.1126/science.aaf4382Crossref PubMed Scopus (925) Google Scholar, 4Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter.J. Cell Sci. 2017; 130 (28808090): 2789-279610.1242/jcs.200295Crossref PubMed Scopus (79) Google Scholar, 5Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294 (30045872): 7115-712710.1074/jbc.TM118.001192Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 6Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell. 2019; 176 (30682370): 419-43410.1016/j.cell.2018.12.035Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, 7Bracha D. Walls M.T. Wei M.-T. Zhu L. Kurian M. Avalos J.L. Toettcher J.E. Brangwynne C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerized seeds.Cell. 2018; 175 (30500534): 1467-148010.1016/j.cell.2018.10.048Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 8Elbaum-Garfinkle S. Matter over mind: liquid phase-separation and neurodegeneration.J. Biol. Chem. 2019; 294 (30914480): 7160-716810.1074/jbc.REV118.001188Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar). MLOs include the nucleolus, nucleoporin channels, nuclear speckles and paraspeckles, nuclear promyelocytic leukemia (PML) bodies, nuclear Cajal bodies, cytoplasmic processing bodies (P-bodies), germinal bodies, Balbiani bodies, Negri bodies, stress granules, translation-promoting TPA-inducible sequence (TIS) granules, and several more recent discoveries, such as condensates of synapsin, of the DNA sensor protein cyclic GMP-AMP synthase in the cytoplasm, and of active transcription-associated condensates in the nucleus (1Mitrea D.M. Kriwacki R.W. Phase separation in biology, functional organization of a higher order.Cell Commun. Signal. 2016; 14 (26727894): 110.1186/s12964-015-0125-7Crossref PubMed Scopus (277) Google Scholar, 2Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225081): 285-29810.1038/nrm.2017.7Crossref PubMed Scopus (1348) Google Scholar, 3Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357 (28935776)eaaf438210.1126/science.aaf4382Crossref PubMed Scopus (925) Google Scholar, 4Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter.J. Cell Sci. 2017; 130 (28808090): 2789-279610.1242/jcs.200295Crossref PubMed Scopus (79) Google Scholar, 5Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294 (30045872): 7115-712710.1074/jbc.TM118.001192Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 6Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell. 2019; 176 (30682370): 419-43410.1016/j.cell.2018.12.035Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, 7Bracha D. Walls M.T. Wei M.-T. Zhu L. Kurian M. Avalos J.L. Toettcher J.E. Brangwynne C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerized seeds.Cell. 2018; 175 (30500534): 1467-148010.1016/j.cell.2018.10.048Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 8Elbaum-Garfinkle S. Matter over mind: liquid phase-separation and neurodegeneration.J. Biol. Chem. 2019; 294 (30914480): 7160-716810.1074/jbc.REV118.001188Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar). Overall, these condensates have liquid-like internal properties (as investigated using fluorescence recovery after photobleaching (FRAP) assays) and are metastable, changing to a gel or to filaments commensurate with the cytoplasmic environment (temperature, ionic conditions, physical deformation, or cytoplasmic "crowding"), and the incorporation of additional proteins, RNA or DNA molecules, or post-translational modifications (1Mitrea D.M. Kriwacki R.W. Phase separation in biology, functional organization of a higher order.Cell Commun. Signal. 2016; 14 (26727894): 110.1186/s12964-015-0125-7Crossref PubMed Scopus (277) Google Scholar, 2Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225081): 285-29810.1038/nrm.2017.7Crossref PubMed Scopus (1348) Google Scholar, 3Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357 (28935776)eaaf438210.1126/science.aaf4382Crossref PubMed Scopus (925) Google Scholar, 4Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter.J. Cell Sci. 2017; 130 (28808090): 2789-279610.1242/jcs.200295Crossref PubMed Scopus (79) Google Scholar, 5Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294 (30045872): 7115-712710.1074/jbc.TM118.001192Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 6Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell. 2019; 176 (30682370): 419-43410.1016/j.cell.2018.12.035Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, 7Bracha D. Walls M.T. Wei M.-T. Zhu L. Kurian M. Avalos J.L. Toettcher J.E. Brangwynne C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerized seeds.Cell. 2018; 175 (30500534): 1467-148010.1016/j.cell.2018.10.048Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 8Elbaum-Garfinkle S. Matter over mind: liquid phase-separation and neurodegeneration.J. Biol. Chem. 2019; 294 (30914480): 7160-716810.1074/jbc.REV118.001188Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar). Indeed, specific DNA and RNA molecules participate in the assembly of many such cytoplasmic and nuclear condensates and in their functions (1Mitrea D.M. Kriwacki R.W. Phase separation in biology, functional organization of a higher order.Cell Commun. Signal. 2016; 14 (26727894): 110.1186/s12964-015-0125-7Crossref PubMed Scopus (277) Google Scholar, 2Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225081): 285-29810.1038/nrm.2017.7Crossref PubMed Scopus (1348) Google Scholar, 3Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357 (28935776)eaaf438210.1126/science.aaf4382Crossref PubMed Scopus (925) Google Scholar, 4Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter.J. Cell Sci. 2017; 130 (28808090): 2789-279610.1242/jcs.200295Crossref PubMed Scopus (79) Google Scholar, 5Gomes E. Shorter J. The molecular language of membraneless organelles.J. Biol. Chem. 2019; 294 (30045872): 7115-712710.1074/jbc.TM118.001192Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 6Alberti S. Gladfelter A. Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell. 2019; 176 (30682370): 419-43410.1016/j.cell.2018.12.035Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, 7Bracha D. Walls M.T. Wei M.-T. Zhu L. Kurian M. Avalos J.L. Toettcher J.E. Brangwynne C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerized seeds.Cell. 2018; 175 (30500534): 1467-148010.1016/j.cell.2018.10.048Abstract Full Text Full Text PDF PubMed Scopus (117) Google Scholar, 8Elbaum-Garfinkle S. Matter over mind: liquid phase-separation and neurodegeneration.J. Biol. Chem. 2019; 294 (30914480): 7160-716810.1074/jbc.REV118.001188Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar). There is also an extensive literature on the changes observed in phase-separated stress granules and P-bodies in diverse virus-infected cells (11Nevers Q. Albertini A.A. Lagaudriere-Gesbert C. Gardin Y. Negri bodies and other virus membrane-less replication compartments.Biochim. Biophys. Acta Mol. Cell Res. 2020; 1867 (32835749)11883110.1016/j.bbamcr.2020.118831Crossref PubMed Scopus (11) Google Scholar, 12Reineke L.C. Lloyd R.E. Diversion of stress granules and P-bodies during viral infection.Virology. 2013; 436 (23290869): 255-26710.1016/j.virol.2012.11.017Crossref PubMed Scopus (134) Google Scholar, 13Onomoto K. Yoneyama M. Fung G. Kato H. Fujita T. Antiviral innate immunity and stress granule responses.Trends Immunol. 2014; 35 (25153707): 420-42810.1016/j.it.2014.07.006Abstract Full Text Full Text PDF PubMed Scopus (123) Google Scholar, 14Rozelle D.K. Filone C.M. Kedersha N. Connor J.H. Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication.Mol. Cell Biol. 2014; 34 (24662051): 2003-201610.1128/MCB.01630-13Crossref PubMed Scopus (33) Google Scholar, 15Malinowska M. Niedzwiedzka-Rystwej P. Tokarz-Deptula B. Deptula M. Stress granules (SG) and processing bodies (PB) in viral infections.Acta Biochim. Pol. 2016; 63 (26894234): 183-18810.18388/abp.2015_1060Crossref PubMed Scopus (10) Google Scholar, 16McCormick C. Khapersky D.A. Translation inhibition and stress granules in the antiviral immune response.Nat. Rev. Immunol. 2017; 17 (28669985): 647-66010.1038/nri.2017.63Crossref PubMed Scopus (117) Google Scholar). In parallel with these insights, it has now been recognized that replication and maturation of negative-strand RNA viruses (e.g. vesicular stomatitis (VSV), rabies (as in Negri bodies), Ebola, and measles viruses) occurs in cytoplasmic phase-separated condensates typically involving the viral nucleocapsid (N) protein with or without additional viral proteins (11Nevers Q. Albertini A.A. Lagaudriere-Gesbert C. Gardin Y. Negri bodies and other virus membrane-less replication compartments.Biochim. Biophys. Acta Mol. Cell Res. 2020; 1867 (32835749)11883110.1016/j.bbamcr.2020.118831Crossref PubMed Scopus (11) Google Scholar, 17Heinrich B.S. Maliga Z. Stein D.A. Hyman A.A. Whelan S.P.J. Phase transitions drive the formation of vesicular stomatitis virus replication compartments.MBio. 2018; 9 (30181255): e02217-e0229010.1128/mbio.02290-17Crossref PubMed Scopus (66) Google Scholar, 18Dinh P.X. Beura L.K. Das P.B. Panda D. Das A. Pattnaik A.K. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells.J. Virol. 2013; 87 (23077311): 372-38310.1128/JVI.02305-12Crossref PubMed Scopus (33) Google Scholar, 19Nikolic J. Le Bars R. Lama Z. Scrima N. Lagaudrière-Gesbert C. Gaudin Y. Blondel D. Negri bodies are viral factories with properties of liquid organelles.Nat. Commun. 2017; 8 (28680096): 5810.1038/s41467-017-00102-9Crossref PubMed Scopus (79) Google Scholar, 20Hoenen T. Shabman R.S. Groseth A. Herwig A. Weber M. Schudt G. Dolnik O. Basler C.F. Becker S. Feldmann H. Inclusion bodies are a site of ebolavirus replication.J. Virol. 2012; 86 (22915810): 11779-1178810.1128/JVI.01525-12Crossref PubMed Scopus (112) Google Scholar, 21Zhou Y. Su J.M. Samuel C.E. Ma D. Measles virus forms inclusion bodies with properties of liquid organelles.J. Virol. 2019; 93 (31375591): e00919-e0094810.1128/jvi.00948-19Crossref Scopus (34) Google Scholar, 22Guseva S. Milles G. Jensen M.R. Salvi N. Kleman J.P. Maurin D. Ruigrok R.W.H. Blackledge M. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly.Sci. Adv. 2020; 6 (32270045)eaaz709510.1126/sciadv.aaz7095Crossref PubMed Scopus (35) Google Scholar, 23Alenquer M. Vale-Costa S. Sousa A.L. Etibor T.A. Ferreira F. Amorim M.J. Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites.Nat. Commun. 2019; 10 (30967547)162910.1038/s41467-019-09549-4Crossref PubMed Scopus (34) Google Scholar). Even the replication of a DNA virus, such as Epstein–Barr virus, involves phase-separated nuclear bodies (24Peng Q. Wang L. Qin Z. Wang J. Zheng X. Wei L. Zhang X. Zhang X. Liu C. Li Z. Wu Y. Li G. Yan Q. Ma J. Phase separation of Epstein-Barr virus EBNA2 and its coactivator EBNALP controls gene expression.J. Virol. 2020; 94 (31941785): e01719-e0177110.1128/jvi.01771-19Crossref PubMed Scopus (14) Google Scholar). Very recently, the N protein of SARS-CoV-2 virus, a positive-strand RNA virus that replicates in the cytoplasm, has been reported to form phase-separated liquid droplets in cell-free assays by a mechanism-catalyzed viral RNA (11Nevers Q. Albertini A.A. Lagaudriere-Gesbert C. Gardin Y. Negri bodies and other virus membrane-less replication compartments.Biochim. Biophys. Acta Mol. Cell Res. 2020; 1867 (32835749)11883110.1016/j.bbamcr.2020.118831Crossref PubMed Scopus (11) Google Scholar, 25Cubuk J. Alston J.J. Incicco J.J. Singh S. Stuchell-Brereton M.D. Ward M.D. Zimmerman M.I. Vithani N. Griffith D. Wagoner J.A. Bowman G.R. Hall K.B. Soranno A. Holehouse A.S. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA.BioRxiv. 2020; 10.1101/2020.06.17.158121PubMed Google Scholar, 26Perdikari T.M. Murthy A.C. Ryan V.H. Watters S. Naik M.T. Fawzi N.L. SARSCoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins.BioRxiv. 2020; 10.1101/2020.06.09.141101PubMed Google Scholar, 27Iserman C. Roden C. Boerneke M. Sealfon R. McLaughlin G. Jungreis I. Park C. Boppana A. Fritch E. Hou Y.J. Theesfeld C. Troyanskaya O.G. Baric R.S. Sheahan T.P. Weeks K. et al.Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate.BioRxiv. 2020; 10.1101/2020.06.11.147199PubMed Google Scholar, 28Carlson C.R. Asfaha J.B. Ghent C.M. Howard C.J. Hartooni N. Morgan D.O. Phosphorylation modulates liquid-liquid phase separation of the SARS-CoV-2 N protein.BioRxiv. 2020; 10.1101/2020.06.28.176248PubMed Google Scholar). We recently reported that the human interferon (IFN)-inducible "myxovirus resistance protein A" (MxA), which displays antiviral activity against several different classes of RNA- and DNA-containing viruses (29Haller O. Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity.Traffic. 2002; 3 (12230469): 710-71710.1034/j.1600-0854.2002.31003.xCrossref PubMed Scopus (363) Google Scholar, 30Haller O. Staeheli P. Kochs G. Interferon-induced Mx proteins in antiviral host defense.Biochimie. 2007; 89 (17570575): 812-81810.1016/j.biochi.2007.04.015Crossref PubMed Scopus (250) Google Scholar, 31Haller O. Staeheli P. Schwemmle M. Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015; 23 (25572883): 154-16310.1016/j.tim.2014.12.003Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar), exists in the cytoplasm in membraneless metastable condensates in structures that include respective viral nucleocapsid proteins (9Sehgal P.B. Westley J. Lerea K.M. DiSenso-Browne S. Etlinger J.D. Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).Anal. Biochem. 2020; 597 (32194074)11369110.1016/j.ab.2020.113691Crossref PubMed Scopus (15) Google Scholar, 10Sehgal P.B. Lerea K.L. Biomolecular condensates and membraneless organelles (MLOs).in: Arthur Cooper Encyclopedia of Biological Chemistry. 3rd Ed. Elsevier, Amsterdam2020Google Scholar, 32Davis D. Yuan H. Yang Y.M. Liang F.X. Sehgal P.B. Interferon-α-induced cytoplasmic MxA structures in hepatoma Huh7 and primary endothelial cells.Contemp. Oncol. (Pozn). 2018; 22 (30150884): 86-9410.5114/wo.2018.76149PubMed Google Scholar, 33Davis D. Yuan H. Liang F.X. Yang Y.M. Westley J. Petzold C. Dancel-Manning K. Deng Y. Sall J. Sehgal P.B. Human antiviral protein MxA forms novel metastable membraneless cytoplasmic condensates exhibiting rapid reversible tonicity-driven phase transitions.J. Virol. 2019; 93: e01014-e0101910.1128/JVI.01014-19Crossref PubMed Scopus (12) Google Scholar), confirming a previous report from 2002 of MxA in membraneless cytoplasmic structures together with La Crosse virus N protein (34Kochs G. Janzen C. Hohenberg H. Haller O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes.Proc. Natl. Acad. Sci. U. S. A. 2002; 99 (11880649): 3153-315810.1073/pnas.052430399Crossref PubMed Scopus (159) Google Scholar). Mx proteins are a family of large dynamin-like GTPases of molecular weight in the size range 60–70 kDa that readily oligomerize (29Haller O. Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity.Traffic. 2002; 3 (12230469): 710-71710.1034/j.1600-0854.2002.31003.xCrossref PubMed Scopus (363) Google Scholar, 30Haller O. Staeheli P. Kochs G. Interferon-induced Mx proteins in antiviral host defense.Biochimie. 2007; 89 (17570575): 812-81810.1016/j.biochi.2007.04.015Crossref PubMed Scopus (250) Google Scholar, 31Haller O. Staeheli P. Schwemmle M. Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015; 23 (25572883): 154-16310.1016/j.tim.2014.12.003Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar). Whereas human MxA has a cytoplasmic localization, the murine Mx1 ortholog predominantly localizes in "Mx domains" or bodies in the nucleus (29Haller O. Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity.Traffic. 2002; 3 (12230469): 710-71710.1034/j.1600-0854.2002.31003.xCrossref PubMed Scopus (363) Google Scholar, 30Haller O. Staeheli P. Kochs G. Interferon-induced Mx proteins in antiviral host defense.Biochimie. 2007; 89 (17570575): 812-81810.1016/j.biochi.2007.04.015Crossref PubMed Scopus (250) Google Scholar, 31Haller O. Staeheli P. Schwemmle M. Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015; 23 (25572883): 154-16310.1016/j.tim.2014.12.003Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar). Consistent with its nuclear localization, murine Mx1 has an antiviral activity against orthomyxoviruses (such as influenza A virus (FLUAV)), which have a nuclear step in their growth cycle, but is reported to be inactive against rhabdoviruses (such as vesicular stomatitis virus (VSV)), which replicate exclusively in the cytoplasm (29Haller O. Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity.Traffic. 2002; 3 (12230469): 710-71710.1034/j.1600-0854.2002.31003.xCrossref PubMed Scopus (363) Google Scholar, 30Haller O. Staeheli P. Kochs G. Interferon-induced Mx proteins in antiviral host defense.Biochimie. 2007; 89 (17570575): 812-81810.1016/j.biochi.2007.04.015Crossref PubMed Scopus (250) Google Scholar, 31Haller O. Staeheli P. Schwemmle M. Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015; 23 (25572883): 154-16310.1016/j.tim.2014.12.003Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar, 35Verhelst J. Hulpiau P. Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited.Microbiol. Mol. Biol. Rev. 2013; 77 (24296571): 551-56610.1128/MMBR.00024-13Crossref PubMed Scopus (139) Google Scholar, 36Meier E. Kunz G. Haller O. Arnheiter H. Activity of rat Mx proteins against a rhabdovirus.J. Virol. 1990; 64 (2173790): 6263-626910.1128/JVI.64.12.6263-6269.1990Crossref PubMed Google Scholar, 37Jin H.K. Takada A. Kon Y. Haller O. Watanabe T. Identification of the murine Mx2 gene: interferon-induced expression of the Mx2 protein from the feral mouse gene confers resistance to vesicular stomatitis virus.J. Virol. 1999; 73 (10233954): 4925-493010.1128/JVI.73.6.4925-4930.1999Crossref PubMed Google Scholar). In contrast, human MxA shows antiviral activity toward both FLUAV and VSV (29Haller O. Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity.Traffic. 2002; 3 (12230469): 710-71710.1034/j.1600-0854.2002.31003.xCrossref PubMed Scopus (363) Google Scholar, 30Haller O. Staeheli P. Kochs G. Interferon-induced Mx proteins in antiviral host defense.Biochimie. 2007; 89 (17570575): 812-81810.1016/j.biochi.2007.04.015Crossref PubMed Scopus (250) Google Scholar, 31Haller O. Staeheli P. Schwemmle M. Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015; 23 (25572883): 154-16310.1016/j.tim.2014.12.003Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar). To clarify the nomenclature of the Mx protein family, we adopt the gene lineage tracing presented by Busnadiego et al. (38Busnadiego I. Kane M. Rihn S.J. Preugschas H.F. Hughes J. Blanco-Melo D. Strouvelle V.P. Zang T.M. Willett B.J. Boutell C. Bieniasz P.D. Wilson S.J. Host and viral determinants of Mx2 antiretroviral activity.J. Virol.
Referência(s)