Polymer-Derived SiBCN Ceramic and their Potential Application for High Temperature Membranes Dedicated to Prof. Dr.-Ing. Dr.h.c. Hartmut Fuess on the occasion of his 65th birthday
2006; Ceramic Society of Japan; Volume: 114; Issue: 1330 Linguagem: Inglês
10.2109/jcersj.114.524
ISSN1882-1022
AutoresRalf Hauser, Saifun Nahar-Borchard, Ralf Riedel, Yumi H. Ikuhara, Yuji Iwamoto,
Tópico(s)Catalytic Processes in Materials Science
ResumoA novel preceramic polymer suitable to form a SiBCN ceramic was synthesized by hydroboration reaction of 1,3,5-trivinyl-1,3,5-trimethyl-cyclotrisilazane with borane dimethylsulphide. The obtained polymer denoted as poly(borosilazane) was characterised by FT-IR and NMR spectroscopy and its thermal stability was studied by thermal gravimetric analysis in combination with in situ mass spectrometry (TG/MS). The polymer-to-ceramic transformation was achieved at 1050°C in inert argon atmosphere yielding black and X-ray amorphous SiBCN ceramics thermally stable up to 1800°C. Using the dip-coating technique, a SiBCN ceramic thin film was formed on a porous alumina substrate. N2 sorption isotherm analysis revealed that the thin film contained a small amount of micropores of about 0.6 nm in diameter, as well as mesopores between 2.7 and 6 nm in size. The total pore volume was found to be about three orders of magnitude smaller than that of a hydrogen permselective amorphous silica membrane derived from polysilazane. These results indicated potential application of the SiBCN thin film as a molecular sieve membrane suitable for high-temperature separation of small gas molecules like hydrogen below 0.3 nm in size.
Referência(s)