Artigo Revisado por pares

Directed self-assembly of spheroids into modular vascular beds for engineering large tissue constructs

2020; IOP Publishing; Volume: 13; Issue: 3 Linguagem: Inglês

10.1088/1758-5090/abc790

ISSN

1758-5090

Autores

Daniel J. Carvalho, Tália Feijão, Mariana I. Neves, Ricardo M. P. da Silva, Cristina C. Barrias,

Tópico(s)

Tissue Engineering and Regenerative Medicine

Resumo

Spheroids can be used as building-blocks for bottom-up generation of artificial vascular beds, but current biofabrication strategies are often time-consuming and complex. Also, pre-optimization of single spheroid properties is often neglected. Here, we report a simple setup for rapid biomanufacturing of spheroid-based patch-like vascular beds. Prior to patch assembly, spheroids combining mesenchymal stem/stromal cells (MSCs) and outgrowth endothelial cells (OECs) at different ratios (10:1; 5:1; 1:1; 1:5) were formed in non-adhesive microwells and monitored along 7 d. Optimal OEC retention and organization was observed at 1:1 MSC/OEC ratio. Dynamic remodelling of spheroids led to changes in both cellular and extracellular matrix components (ECMs) over time. Some OEC formed internal clusters, while others organized into a peripheral monolayer, stabilized by ECM and pericyte-like cells, with concomitant increase in surface stiffness. Along spheroid culture, OEC switched from an active to a quiescent state, and their endothelial sprouting potential was significantly abrogated, suggesting that immature spheroids may be more therapeutically relevant. Non-adhesive moulds were subsequently used for triggering rapid, one-step, spheroid formation/fusion into square-shaped patches, with spheroids uniformly interspaced via a thin cell layer. The high surface area, endothelial sprouting potential, and scalability of the developed spheroid-based patches make them stand out as artificial vascular beds for modular engineering of large tissue constructs.

Referência(s)
Altmetric
PlumX