Artigo Revisado por pares

Exploratory Study on Incorporating Glass FRP Reinforcement to Control Damage in Steel-Reinforced Concrete Bridge Pier Walls

2020; American Society of Civil Engineers; Volume: 26; Issue: 2 Linguagem: Inglês

10.1061/(asce)be.1943-5592.0001648

ISSN

1943-5592

Autores

Ahmed Arafa, Nourhan Ahmed, Ahmed Sabry Farghaly, Omar Chaallal, Brahim Benmokrane,

Tópico(s)

Structural Response to Dynamic Loads

Resumo

The need to demonstrate that a steel-reinforced concrete bridge pier wall resilient to strong earthquakes could be attained by the incorporation of glass fiber–reinforced polymer (GFRP) reinforcement has been brought to the fore by recent experimental results on GFRP-reinforced concrete bridge pier walls. The test results show that the GFRP bars assisted in crack recovery and the self-centering of walls between load reversals. Hence, GFRP bars could potentially be used to control the unrecoverable damage in steel-reinforced bridge pier walls after an earthquake. This study will use nonlinear finite element analysis (FEA) as a powerful tool to verify this expectation. A series of analyses will be implemented on concrete bridge pier walls reinforced with either steel or GFRP bars to demonstrate that the finite element (FE) procedure can provide quick and reliable simulation. The study is then extended to investigate the effect of using hybrid reinforcement through a comprehensive parametric study. Different configurations of GFRP bars are examined and compared with similar configurations of steel bars. The results show that hybrid reinforced bridge pier walls can undergo large displacements with minimal residual deformations. Nevertheless, a sensible selection of the GFRP bars location is necessary. The findings of this study could be considered as a fundamental step toward the development of code provisions for the use of hybrid GFRP/steel (GS) reinforcement in concrete bridge pier walls.

Referência(s)
Altmetric
PlumX