The Steenrod problem of realizing polynomial cohomology rings
2008; Wiley; Volume: 1; Issue: 4 Linguagem: Inglês
10.1112/jtopol/jtn021
ISSN1753-8424
AutoresKasper K. S. Andersen, Jesper Grodal,
Tópico(s)Advanced Topics in Algebra
ResumoJournal of TopologyVolume 1, Issue 4 p. 747-760 Original article The Steenrod problem of realizing polynomial cohomology rings Kasper K. S. Andersen, Corresponding Author Kasper K. S. Andersen [email protected] Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Bygning 1530, DK-8000 Aarhus C, DenmarkSearch for more papers by this authorJesper Grodal, Corresponding Author Jesper Grodal [email protected] Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, DenmarkSearch for more papers by this author Kasper K. S. Andersen, Corresponding Author Kasper K. S. Andersen [email protected] Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Bygning 1530, DK-8000 Aarhus C, DenmarkSearch for more papers by this authorJesper Grodal, Corresponding Author Jesper Grodal [email protected] Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, DenmarkSearch for more papers by this author First published: 23 December 2016 https://doi.org/10.1112/jtopol/jtn021Citations: 5 2000 Mathematics Subject Classification 55N10 (primary), 55R35, 55R40 (secondary) The second named author was partially supported by NSF grant DMS-0354633, the Alfred P. Sloan Foundation, and the Danish Natural Science Research Council. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract In this paper, we completely classify which graded polynomial R-algebras in finitely many even degree variables can occur as the singular cohomology of a space with coefficients in R, a 1960 question of N. E. Steenrod, for a commutative ring R satisfying mild conditions. In the fundamental case R = ℤ, our result states that the only polynomial cohomology rings over ℤ that can occur are tensor products of copies of H * ( ℂ P ∞ ; ℤ ) ≅ ℤ [ x 2 ] , H * ( B SU ( n ) ; ℤ ) ≅ ℤ [ x 4 , x 6 , … , x 2 n ] , and H * ( B Sp ( n ) ; ℤ ) ≅ ℤ [ x 4 , x 8 , … , x 4 n ] , confirming an old conjecture. Our classification extends Notbohm's solution for R = 𝔽p, p odd. Odd degree generators, excluded above, only occur if R is an 𝔽2-algebra and in that case the recent classification of 2-compact groups by the authors can be used instead of the present paper. Our proofs are short and rely on the general theory of p-compact groups, but not on classification results for these. References 1J. F. Adams, C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math., 1980, 111(2), no. 1, 95–143; erratum, Ann. of Math. (2) 113 (1981) no. 3, 621–622 2J. Aguadé, A note on realizing polynomial algebras, Israel J. Math., 1981, 38(1–2), 95– 99 3J. Aguadé, Realizability of cohomology algebras: a survey, Publ. Sec. Mat. Univ. Autònoma Barcelona, 1982, 26(2), 25– 68 4J. Aguadé, Constructing modular classifying spaces, Israel J. Math., 1989, 66(1–3), 23– 40 5K. K. S. Andersen, T. Bauer, J. Grodal, E. K. Pedersen, A finite loop space not rationally equivalent to a compact Lie group, Invent. Math., 2004, 157(1), 1– 10 6K. K. S. Andersen, J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc., to appear. arXiv:math.AT/0611437 7K. K. S. Andersen, J. Grodal, J. M. Møller, A. Viruel, The classification of p-compact groups for p odd, Ann. of Math. (2), 2008, 167(1), 95– 210 8M. Auslander, D. A. Buchsbaum, Homological dimension in noetherian rings. II, Trans. Amer. Math. Soc., 1958, 88, 194– 206 9A. Baker, B. Richter, Quasisymmetric functions from a topological point of view, Math. Scand., 2008, 103(2), 208– 242 10H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 1962, 102, 18– 29 11D. J. Benson, Polynomial invariants of finite groups, 1993, Cambridge, Cambridge University Press 12D. J. Benson, J. F. Carlson, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc., 1994, 342(2), 447– 488 13A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2), 1961, 13, 216– 240 14A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, 1972, Berlin, Springer, Lecture Notes in Mathematics 304 15H. Cartan, S. Eilenberg, Homological algebra, 1956, Princeton, NJ, Princeton University Press 16S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 1960, 97, 457– 473 17A Clark, J Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math., 1974, 50, 425– 434 18A. Dold, Universelle Koeffizienten, Math. Z., 1962, 80, 63– 88 19W. G. Dwyer, Strong convergence of the Eilenberg–Moore spectral sequence, Topology, 1974, 13, 255– 265 20W. G. Dwyer, Lie groups and p-compact groups, Proceedings of the International Congress of Mathematicians, Extra Vol. II, Berlin 1998, (1998) 433–442 (electronic) 21W. G. Dwyer, H. R. Miller, C. W. Wilkerson, Homotopical uniqueness of classifying spaces, Topology, 1992, 31(1), 29– 45 22W. G. Dwyer, C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc., 1993, 6(1), 37– 64 23W. G. Dwyer, C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2), 1994, 139(2), 395– 442 24W. G. Dwyer, C. W. Wilkerson, The center of a p-compact group, 119– 157, The Čech centennial, Boston 1993 (American Mathematical Society, Providence, RI, 1995) 25W. G. Dwyer, C. W. Wilkerson, Product splittings for p-compact groups, Fund. Math., 1995, 147(3), 279– 300 26W. G. Dwyer, C. W. Wilkerson, Kähler differentials, the T-functor, and a theorem of Steinberg, Trans. Amer. Math. Soc., 1998, 350(12), 4919– 4930 27D. M. Kan, W. P. Thurston, Every connected space has the homology of a K(π, 1), Topology, 1976, 15(3), 253– 258 28J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math., 1992, 75, 135– 244 29C. A. McGibbon, The Mislin genus of a space, The Hilton Symposium, 1993, (Montreal, PQ), CRM Proceedings & Lecture Notes 6 (American Mathematical Society, Providence, RI, 1994) 75–102 30G. Mislin, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment. Math. Helv., 1990, 65(3), 454– 461 31J. M. Møller, The normalizer of the Weyl group, Math. Ann., 1992, 294(1), 59– 80 32D. Notbohm, Topological realization of a family of pseudoreflection groups, Fund. Math., 1998, 155(1), 1– 31 33D. Notbohm, Spaces with polynomial mod-p cohomology, Math. Proc. Cambridge Philos. Soc., 1999, 126(2), 277– 292 34D Notbohm, L Smith, Fake Lie groups and maximal tori. II, Math. Ann., 1990, 288(4), 663– 673 35D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math., 1972, 96(2), 552– 586 36D. L. Rector, Subgroups of finite dimensional topological groups, J. Pure Appl. Algebra, 1971, 1(3), 253– 273 37J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math., 1951, 54(2), 425– 505 38G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canadian J. Math., 1954, 6, 274– 304 39N. E. Steenrod, The cohomology algebra of a space, Enseignement Math., 1961, 7(2), 153– 178 40N. E. Steenrod, Polynomial algebras over the algebra of cohomology operations, 85– 99, H-spaces, Actes Réunion Neuchâtel 1970, Lecture Notes in Mathematics 196 (Springer, Berlin, 1971) 41R. Steinberg, Torsion in reductive groups, Adv. Math., 1975, 15, 63– 92 42T Sugawara, H Toda, Squaring operations on truncated polynomial algebras, Japan. J. Math., 1969, 38, 39– 50 43D. P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, the 1970 MIT notes, K-Monographs in Mathematics 8 (ed. A. Ranicki; Springer, Dordrecht, 2005) 44E. Thomas, Steenrod squares and H-spaces, Ann. of Math., 1963, 77(2), 306– 317 45E. Thomas, Steenrod squares and H-spaces. II, Ann. of Math., 1965, 81(2), 473– 495 46C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math., 1965, 81(2), 56– 69 47C. A. Weibel, An introduction to homological algebra, 1994, Cambridge, Cambridge University Press, Cambridge Studies in Advanced Mathematics 38 48G. W. Whitehead, Elements of homotopy theory, 1978, New York, Springer, Graduate Texts in Mathematics 61 49C. W. Wilkerson, Applications of minimal simplicial groups, Topology, 1976, 15(2), 111– 130, erratum, Topology 19 (1980) no. 1, 99 50C. W. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology, 1977, 16(3), 227– 237 51A. Zabrodsky, On the realization of invariant subgroups of π*(X), Trans. Amer. Math. Soc., 1984, 285(2), 467– 496 Citing Literature Volume1, Issue4October 2008Pages 747-760 ReferencesRelatedInformation
Referência(s)