Artigo Acesso aberto Revisado por pares

A mean-field theory of the chiral phase transition

1996; Elsevier BV; Volume: 609; Issue: 4 Linguagem: Inglês

10.1016/s0375-9474(96)00295-3

ISSN

1873-1554

Autores

G.E. Brown, Michael Buballa, Mannque Rho,

Tópico(s)

Particle physics theoretical and experimental studies

Resumo

The recent discussions by Kocić and Kogut on the nature of the chiral phase transition are reviewed. The mean-field nature of the transition suggested by these authors is supported in random matrix theory by Verbaarschot and Jackson which reproduces many aspects of QCD lattice simulations. In this paper, we point out physical arguments that favor a mean-field transition, not only for zero density and high temperature, but also for finite density. We show, using the Gross-Neveu model in three spatial dimensions in mean-field approximation, how the phase transition is constructed. In order to reproduce the lowering of the ϱ = 0, T = 0 vacuum evaluated in lattice calculations, we introduce nucleons rather than constituent quarks in negative-energy states, down to a momentum cut-off of Λ. We also discuss Brown-Rho scaling of the hadron masses in relation to the QCD phase transition, and how this scaling affects the CERES and HELIOS-3 dilepton experiments.

Referência(s)