Artigo Acesso aberto Revisado por pares

Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus

2020; Volume: 27; Issue: 2 Linguagem: Inglês

10.3171/2020.6.peds20251

ISSN

1933-0715

Autores

Jennifer L. Quon, Michelle Han, Lily H. Kim, Mary Ellen I. Koran, Leo C. Chen, Edward H. Lee, Jason L. Wright, Vijay Ramaswamy, Robert M. Lober, Michael D. Taylor, Gerald A. Grant, Samuel Cheshier, John R. W. Kestle, Michael S. B. Edwards, Kristen W. Yeom,

Tópico(s)

Traumatic Brain Injury and Neurovascular Disturbances

Resumo

Imaging evaluation of the cerebral ventricles is important for clinical decision-making in pediatric hydrocephalus. Although quantitative measurements of ventricular size, over time, can facilitate objective comparison, automated tools for calculating ventricular volume are not structured for clinical use. The authors aimed to develop a fully automated deep learning (DL) model for pediatric cerebral ventricle segmentation and volume calculation for widespread clinical implementation across multiple hospitals.

Referência(s)