Artigo Revisado por pares

Initial Orbit Determination from Bearing and Range-Rate Measurements Using the Orbital Hodograph

2020; American Institute of Aeronautics and Astronautics; Volume: 44; Issue: 2 Linguagem: Inglês

10.2514/1.g005433

ISSN

1533-3884

Autores

John A. Christian, W. E. Parker,

Tópico(s)

GNSS positioning and interference

Resumo

No AccessEngineering NotesInitial Orbit Determination from Bearing and Range-Rate Measurements Using the Orbital HodographJohn A. Christian and William E. ParkerJohn A. ChristianRensselaer Polytechnic Institute, Troy, New York 12180 and William E. ParkerRensselaer Polytechnic Institute, Troy, New York 12180Published Online:24 Nov 2020https://doi.org/10.2514/1.G005433SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Laplace S., "Mémoire sur la Détermination des Orbites des Comètes," Mémoires de Mathématique et de Physique, 1780, pp. 13–72. Google Scholar[2] Gauss C. F., Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum, F. Perthes and I.H. Besser, Hamburg, Germany, 1809. Google Scholar[3] Gibbs J., "On the Determination of Elliptic Orbits from Three Complete Observations," Memoirs of the National Academy of Sciences, Vol. 4, No. 8, 1889, pp. 79–104. Google Scholar[4] Yeomans D. K., Chodas P. W., Keesy M. S., Ostro S. J., Chandler J. F. and Shapiro I. I., "Asteroid and Comet Orbits Using Radar Data," Astronomical Journal, Vol. 103, Jan. 1992, pp. 303–317. https://doi.org/10.1086/116062 Google Scholar[5] Thornton C. and Border J., Radiometric Tracking Techniques for Deep Space Navigation, Wiley, Hoboken, NJ, 2003. CrossrefGoogle Scholar[6] Misra P. and Enge P., Global Positioning System: Signals, Measurements, and Performance, 2nd ed., Ganga-Jamuna Press, Lincoln, MA, 2012. Google Scholar[7] Owen W., "Methods of Optical Navigation," AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper 11-215, San Diego, CA, 2011. Google Scholar[8] Christian J., "Accurate Planetary Limb Localization for Image-Based Spacecraft Navigation," Journal of Spacecraft and Rockets, Vol. 54, No. 3, 2017, pp. 708–730. https://doi.org/10.2514/1.A33692 LinkGoogle Scholar[9] Sheikh S., Pines D., Ray P., Wood K., Lovellette M. and Wolff M., "Spacecraft Navigation Using X-Ray Pulsars," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 1, 2006, pp. 49–63. https://doi.org/10.2514/1.13331 LinkGoogle Scholar[10] Escobal P. R., Methods of Orbit Determination, 2nd ed., Robert E. Krieger Publishing Company, Malabar, FL, 1976. Google Scholar[11] Tapley B., Schutz B. and Born G., Statistical Orbit Determination, Elsevier Academic Press, Amsterdam, 2004. https://doi.org/10.1016/B978-0-12-683630-1.X5019-X CrossrefGoogle Scholar[12] Christian J. and Hollenberg C., "Initial Orbit Determination from Three Velocity Vectors," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 4, 2019, pp. 894–899. https://doi.org/10.2514/1.G003988 LinkGoogle Scholar[13] Hollenberg C. L. and Christian J. A., "Geometric Solutions for Problems in Velocity-Based Orbit Determination," Journal of the Astronautical Sciences, Vol. 67, No. 1, 2019, pp. 188–224. https://doi.org/10.1007/s40295-019-00170-7 Google Scholar[14] Christian J. A., "StarNAV: Autonomous Optical Navigation of a Spacecraft by the Relativistic Perturbation of Starlight," Sensors, Vol. 19, No. 19, 2019, p. 4064. https://doi.org/10.3390/s19194064 CrossrefGoogle Scholar[15] Parker W., Thibeault R., Quintero G. and Christian J., "Guide Star Selection for Spacecraft Navigation with StarNAV," 43rd Annual AAS Guidance, Navigation and Control Conference, American Astronautical Soc. Paper 20-123, San Diego, CA, 2020. Google Scholar[16] McKee P., Chrisitan J. and D'Souza C., "Analysis of Cislunar Autonomous Navigation with StarNAV and OPNAV," 43rd Annual AAS Guidance, Navigation and Control Conference, American Astronautical Soc. Paper 20-041, San Diego, CA, 2020. Google Scholar[17] Norton R. and Wildey R., "Fundamental Limitations to Optical Doppler Measurements for Space Navigation," Proceedings of the IRE, Vol. 49, No. 11, 1961, pp. 1655–1659. https://doi.org/10.1109/JRPROC.1961.287769 Google Scholar[18] Yim J., Crassidis J. and Junkins J., "Autonomous Navigation of an Interplanetary Spacecraft," AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2000-3936, 2000. https://doi.org/10.2514/6.2000-3936 Google Scholar[19] Henderson T., Pollock T., Sinclair A., Theisinger J., Hurtado J. and Junkins J., "Hardware Development and Measurements of Solar Doppler Shift for Spacecraft Orbit Determination," AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Soc. Paper 03-613, San Diego, CA, 2003. Google Scholar[20] Sinclair A., Henderson T., Hurtado J. and Junkins J., "Development of Spacecraft Orbit Determination and Navigation Using Solar Doppler Shift," AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Soc. Paper 03-159, San Diego, CA, 2003. Google Scholar[21] Hamilton W. R., "The Hodograph, or a New Method of Expressing in Symbolical Language the Newtonian Law of Attraction," Proceeding of the Royal Irish Academy, Vol. 3, 1847, pp. 344–353. Google Scholar[22] Derbes D., "Reinventing the Wheel: Hodographic Solutions to the Kepler Problems," American Journal of Physics, Vol. 69, No. 4, 2001, pp. 481–489. https://doi.org/10.1119/1.1333099. Google Scholar[23] Wiesel W., Spaceflight Dynamics, 2nd ed., Irwin/McGraw-Hill, Boston, MA, 1997, pp. 53–54, 66. Google Scholar[24] Vallado D., Fundamentals of Astrodynamics and Applications, 3rd ed., Microcosm Press, Hawthorne, CA, 2007, pp. 27–29, 125. Google Scholar[25] Curtis H., Orbital Mechanics for Engineering Students, 4th ed., Butterworth-Heinemann, Cambridge, MA, 2020, pp. 67–74, 104. Google Scholar[26] Bate R., Mueller D., White J. and Saylor W., Fundamentals of Astrodynamics, 2nd ed., Dover, New York, 2020, pp. 16–17, 58. Google Scholar[27] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, rev. ed., AIAA, Reston, VA, 1999, pp. 53–54, 126–127. Google Scholar[28] Altman S., Orbital Hodograph Analysis, Vol. 3, American Astronautical Soc., Baltimore, MD, 1965. Google Scholar[29] Markovsky I. and Van Huffel S., "Overview of Total Least-Squares Methods," Signal Processing, Vol. 87, No. 10, 2007, pp. 2283–2302. https://doi.org/10.1016/j.sigpro.2007.04.004 CrossrefGoogle Scholar[30] Cardano G., Artis Magnæ, Sive de Regulis Algebraicis Liber Unus ("Ars Magna"), 1545. Google Scholar[31] Zucker I. J., "The Cubic Equation—A New Look at the Irreducible Case," Mathematical Gazette, Vol. 92, No. 524, 2008, pp. 264–268. https://doi.org/10.1017/S0025557200183135 Google Scholar[32] Nistér D., Naroditsky O. and Bergen J., "Visual Odometry," Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2004. https://doi.org/10.1109/CVPR.2004.1315094 Google Scholar[33] Scaramuzza D. and Fraundorfer F., "Visual Odometry Part I: The First 30 Years and Fundamentals," IEEE Robotics & Automation Magazine, Vol. 18, No. 4, 2011, pp. 80–92. https://doi.org/10.1109/MRA.2011.943233 CrossrefGoogle Scholar[34] Christian J. A., Hong L., McKee P., Christensen R. and Crain T. P., "Image-Based Lunar Terrain Relative Navigation Without a Map: Measurements," Journal of Spacecraft and Rockets (in press). https://doi.org/10.2514/1.A34875 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byInitial Orbit Determination from Only Heading MeasurementsJohn A. Christian 27 February 2023 | Journal of Spacecraft and Rockets, Vol. 0, No. 0Using radar beam-parks to characterize the Kosmos-1408 fragmentation eventActa Astronautica, Vol. 202 What's Popular Volume 44, Number 2February 2021 CrossmarkInformationCopyright © 2020 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAstronomyAttitude ControlCelestial MechanicsFlight DynamicsKepler's Laws of Planetary MotionOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationPlanetsSpace OrbitSpace Science and Technology KeywordsOrbit DeterminationFlight Path AngleEarthPeriapsisEccentric AnomalySingular Value DecompositionKepler's EquationSpecific Angular MomentumNewton Raphson MethodSpacecraft TrajectoriesPDF Received1 June 2020Accepted18 October 2020Published online24 November 2020

Referência(s)