Residual Life Prediction of Gas-Engine Turbine Blades Based on Damage Surrogate-Assisted Modeling
2020; Multidisciplinary Digital Publishing Institute; Volume: 10; Issue: 23 Linguagem: Inglês
10.3390/app10238541
ISSN2076-3417
AutoresBoris Vasilyev, S. Nikolaev, Mikhail Raevskiy, Sergei Belov, Ighor Uzhinsky,
Tópico(s)Probabilistic and Robust Engineering Design
ResumoBlade damage accounts for a substantial part of all failure events occurring at gas-turbine-engine power plants. Current operation and maintenance (O&M) practices typically use preventive maintenance approaches with fixed intervals, which involve high costs for repair and replacement activities, and substantial revenue losses. The recent development and evolution of condition-monitoring techniques and the fact that an increasing number of turbines in operation are equipped with online monitoring systems offer the decision maker a large amount of information on the blades’ structural health. So, predictive maintenance becomes feasible. It has the potential to predict the blades’ remaining life in order to support O&M decisions for avoiding major failure events. This paper presents a surrogate model and methodology for estimating the remaining life of a turbine blade. The model can be used within a predictive maintenance decision framework to optimize maintenance planning for the blades’ lifetime.
Referência(s)