Artigo Acesso aberto Revisado por pares

Multiple wheat genomes reveal global variation in modern breeding

2020; Nature Portfolio; Volume: 588; Issue: 7837 Linguagem: Inglês

10.1038/s41586-020-2961-x

ISSN

1476-4687

Autores

Sean Walkowiak, Liangliang Gao, Cécile Monat, Georg Haberer, Mulualem T. Kassa, Jemima Brinton, Ricardo H. Ramírez-González, Markus C. Kolodziej, Emily Delorean, Dinushika Thambugala, Valentyna Klymiuk, Brook Byrns, Heidrun Gundlach, Venkat Bandi, Jorge Núñez Siri, Kirby T. Nilsen, Catharine Aquino, Axel Himmelbach, Dario Copetti, Tomohiro Ban, Luca Venturini, Michael W. Bevan, Bernardo Clavijo, Dal-Hoe Koo, Jennifer Ens, Krystalee Wiebe, Amidou N’Diaye, A.K. Fritz, Carl Gutwin, Anne Fiebig, Nigel Fosker, Bin Xiao Fu, Gonzalo Garcia Accinelli, Keith A. Gardner, Nick Fradgley, Juan J. Gutiérrez-González, Gwyneth Halstead-Nussloch, Masaomi Hatakeyama, ChuShin Koh, Jasline Deek, Alejandro C. Costamagna, Pierre R. Fobert, Darren Heavens, Hiroyuki Kanamori, Kanako Kawaura, Fuminori Kobayashi, Ksenia V. Krasileva, Tony Kuo, Neil McKenzie, Kazuki Murata, Yusuke Nabeka, Timothy Paape, Sudharsan Padmarasu, Lawrence Percival‐Alwyn, Sateesh Kagale, Uwe Scholz, Jun Sese, Philomin Juliana, Ravi P. Singh, Rie Shimizu‐Inatsugi, David Swarbreck, James Cockram, Hikmet Budak, Toshiaki Tameshige, Tsuyoshi Tanaka, Hiroyuki Tsuji, Jonathan Wright, Jian Wu, Burkhard Steuernagel, Ian Small, Sylvie Cloutier, Gabriel Keeble‐Gagnère, Gary J. Muehlbauer, Josquin Tibbets, Shuhei Nasuda, Joanna Melonek, Pierre Hucl, Andrew Sharpe, Matthew D. Clark, Erik Legg, Arvind K. Bharti, Peter Langridge, Anthony Hall, Cristóbal Uauy, Martin Mascher, Simon G. Krattinger, Hirokazu Handa, Kentaro K. Shimizu, Assaf Distelfeld, K. J. Chalmers, Beat Keller, Klaus Mayer, Jesse Poland, Nils Stein, Curt A. McCartney, M. Spannagl, Thomas Wicker, Curtis Pozniak,

Tópico(s)

Genetics and Plant Breeding

Resumo

Abstract Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat ( Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome 1 , and the lack of genome-assembly data for multiple wheat lines 2,3 . Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses 4,5 . We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm1 6 , a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.

Referência(s)