Artigo Acesso aberto Revisado por pares

CubeSat Adaptive Attitude Control with Uncertain Drag Coefficient and Atmospheric Density

2020; American Institute of Aeronautics and Astronautics; Volume: 44; Issue: 2 Linguagem: Inglês

10.2514/1.g005515

ISSN

1533-3884

Autores

Runhan Sun, Camilo Riano-Rios, Riccardo Bevilacqua, Norman Fitz-Coy, Warren E. Dixon,

Tópico(s)

Adaptive Control of Nonlinear Systems

Resumo

No AccessEngineering NotesCubeSat Adaptive Attitude Control with Uncertain Drag Coefficient and Atmospheric DensityRunhan Sun, Camilo Riano-Rios, Riccardo Bevilacqua, Norman G. Fitz-Coy and Warren E. DixonRunhan SunUniversity of Florida, Gainesville, Florida 32603, Camilo Riano-RiosUniversity of Florida, Gainesville, Florida 32603, Riccardo BevilacquaUniversity of Florida, Gainesville, Florida 32603, Norman G. Fitz-CoyUniversity of Florida, Gainesville, Florida 32603 and Warren E. DixonUniversity of Florida, Gainesville, Florida 32603Published Online:29 Dec 2020https://doi.org/10.2514/1.G005515SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Bevilacqua R. and Romano M., "Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1595–1607. https://doi.org/10.2514/1.36362 LinkGoogle Scholar[2] Guglielmo D., Omar S., Bevilacqua R., Fineberg L., Treptow J., Poffenberger B. and Johnson Y., "Drag Deorbit Device: A New Standard Reentry Actuator for CubeSats," Journal of Spacecraft and Rockets, Vol. 56, No. 1, 2019, pp. 129–145. https://doi.org/10.2514/1.A34218 LinkGoogle Scholar[3] Omar S. R. and Bevilacqua R., "Spacecraft Collision Avoidance Using Aerodynamic Drag," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 3, 2020, pp. 567–573. https://doi.org/10.2514/1.G004518 LinkGoogle Scholar[4] Omar S. R. and Bevilacqua R., "Hardware and GNC Solutions for Controlled Spacecraft Re-Entry Using Aerodynamic Drag," Acta Astronautica, Vol. 159, June 2019, pp. 49–64. https://doi.org/10.1016/j.actaastro.2019.03.051 CrossrefGoogle Scholar[5] Sutherland R., Kolmanovsky I. and Girard A. R., "Attitude Control of a 2U Cubesat by Magnetic and Air Drag Torques," IEEE Transactions on Control Systems Technology, Vol. 27, No. 3, 2018, pp. 1047–1059. https://doi.org/10.1109/TCST.2018.2791979 CrossrefGoogle Scholar[6] Pastorelli M., Bevilacqua R. and Pastorelli S., "Differential-Drag-Based Roto-Translational Control for Propellant-Less Spacecraft," Acta Astronautica, Vol. 114, Sept. 2015, pp. 6–21. https://doi.org/10.1016/j.actaastro.2015.04.014 CrossrefGoogle Scholar[7] Sun R., Wang J., Zhang D., Jia Q. and Shao X., "Roto-Translational Spacecraft Formation Control Using Aerodynamic Forces," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2556–2568. https://doi.org/10.2514/1.G003130 LinkGoogle Scholar[8] Guglielmo D., Omar S. R. and Bevilacqua R., "Drag De-Orbit Device (D3): A Retractable Device for CubeSat Attitude and Orbit Control Using Aerodynamic Forces," NASA Technical Reports Server, KSC-E-DAA-TN37922, 2017, https://ntrs.nasa.gov/citations/20170000261. Google Scholar[9] National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, U.S. Standard Atmosphere, Rept. NOAA-S/T-76-1562, NASA-TM-X-74335, Washington, D.C., 1976, https://ntrs.nasa.gov/citations/19770009539. Google Scholar[10] Picone J., Hedin A., Drob D. P. and Aikin A., "NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues," Journal of Geophysical Research: Space Physics, Vol. 107, No. A12, 2002, pp. SIA–15. 10.1029/2002 JA009430 Google Scholar[11] Wang Y. and Xu S., "Attitude Stability of a Spacecraft on a Stationary Orbit Around an Asteroid Subjected to Gravity Gradient Torque," Celestial Mechanics and Dynamical Astronomy, Vol. 115, No. 4, 2013, pp. 333–352. https://doi.org/10.1007/s10569-012-9463-6 CrossrefGoogle Scholar[12] Mammarella M., Lee D. Y., Park H., Capello E., Dentis M. and Guglieri G., "Attitude Control of a Small Spacecraft via Tube-Based Model Predictive Control," Journal of Spacecraft and Rockets, Vol. 56, No. 6, 2019, pp. 1662–1679. https://doi.org/10.2514/1.A34394 LinkGoogle Scholar[13] Omar S., Riano-Rios C. and Bevilacqua R., "Semi-Passive Three Axis Attitude Stabilization for Earth Observation Satellites Using the Drag Maneuvering Device," 12th International Academy of Astronautics Symposium on Small Satellites for Earth Observation, Paper IAA-B12-0701, Berlin, Germany, 2019. Google Scholar[14] Riano-Rios C., Omar S., Bevilacqua R. and Dixon W., "Spacecraft Attitude Regulation in Low Earth Orbit Using Natural Torques," 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Inst. of Electrical and Electronics Engineers, New York, 2019, pp. 1–6. https://doi.org/10.1109/CCAC.2019.8921399 Google Scholar[15] Ioannou P. A. and Sun J., Robust Adaptive Control, PTR Prentice-Hall, Upper Saddle River, NJ, 1996, Vol. 1, Chaps. 4, 5. Google Scholar[16] Narendra K. S. and Annaswamy A. M., Stable Adaptive Systems, Prentice-Hall, Upper Saddle River, NJ, 1989, Chap. 6. Google Scholar[17] Sastry S. and Bodson M., Adaptive Control: Stability, Convergence and Robustness, Prentice-Hall, Upper Saddle River, NJ, 1989, Chap. 6. Google Scholar[18] Chowdhary G. V. and Johnson E. N., "Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 592–607. https://doi.org/10.2514/1.46866 LinkGoogle Scholar[19] Chowdhary G., Yucelen T., Mühlegg M. and Johnson E. N., "Concurrent Learning Adaptive Control of Linear Systems with Exponentially Convergent Bounds," International Journal of Adaptive Control and Signal Processing, Vol. 27, No. 4, 2013, pp. 280–301. https://doi.org/10.1002/acs.2297 CrossrefGoogle Scholar[20] Parikh A., Kamalapurkar R. and Dixon W. E., "Integral Concurrent Learning: Adaptive Control with Parameter Convergence Using Finite Excitation," International Journal of Adaptive Control and Signal Processing, Vol. 33, No. 12, 2019, pp. 1775–1787. https://doi.org/10.1002/acs.2945 CrossrefGoogle Scholar[21] Bell Z. I., Nezvadovitz J., Parikh A., Schwartz E. M. and Dixon W. E., "Global Exponential Tracking Control for an Autonomous Surface Vessel: An Integral Concurrent Learning Approach," IEEE Journal of Oceanic Engineering, Vol. 45, No. 2, 2018, pp. 362–370. https://doi.org/10.1109/JOE.2018.2880622 Google Scholar[22] Riano-Rios C., Bevilacqua R. and Dixon W. E., "Differential Drag-Based Multiple Spacecraft Maneuvering and On-Line Parameter Estimation Using Integral Concurrent Learning," Acta Astronautica, Vol. 174, Sept. 2020, pp. 189–203. https://doi.org/10.1016/j.actaastro.2020.04.059 CrossrefGoogle Scholar[23] Blackburn E. P., DeBra D., Dobrotin B., Scull J., Fischell R. E., Fosth D., Kelly J., Fleig A. J., Perkel H., Roberson R. E., Rodden J., Tinling B., O'Neil S., Carroll F. J. and Bohling R. F., "NASA Space Vehicle Design Criteria Monograph (Guidance and Control)," NASA SP-8018, March 1969. Google Scholar[24] Wertz J. R., Everett D. F. and Puschell J. J., Space Mission Engineering: The New SMAD, Microcosm Press, Torrance, CA, 2011, pp. 565–600. Google Scholar[25] Kuipers J. B., Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality, Princeton Univ. Press, Princeton, NJ, 1999, Chaps. 5, 6. Google Scholar[26] Costic B., Dawson D., De Queiroz M. and Kapila V., "Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements," Journal of Guidance, Control, and Dynamics, Vol. 24, No. 6, 2001, pp. 1214–1222. https://doi.org/10.2514/2.4837 LinkGoogle Scholar[27] MacKunis W., Dupree K., Fitz-Coy N. and Dixon W., "Adaptive Satellite Attitude Control in the Presence of Inertia and CMG Gimbal Friction Uncertainties," Journal of the Astronautical Sciences, Vol. 56, No. 1, 2008, pp. 121–134. https://doi.org/10.1007/BF03256544. CrossrefGoogle Scholar[28] Krstic M., Kokotovic P. V. and Kanellakopoulos I., Nonlinear and Adaptive Control Design, Wiley, New York, 1995, pp. 511–514. Google Scholar[29] Khalil H. K., Nonlinear Systems, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2002, Vol. 3, Chaps. 3, 4. Google Scholar[30] Kamalapurkar R., Reish B., Chowdhary G. and Dixon W. E., "Concurrent Learning for Parameter Estimation Using Dynamic State-Derivative Estimators," IEEE Transactions on Automatic Control, Vol. 62, No. 7, 2017, pp. 3594–3601. https://doi.org/10.1109/TAC.2017.2671343 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited bySatellite attitude control using optimal adaptive and fuzzy controllersActa Astronautica, Vol. 204Multiplexed MPC attitude control of a moving mass satellite using dual-rate piecewise affine modelAerospace Science and Technology, Vol. 128Roto-Translational Control of Spacecraft in Low Earth Orbit Using Environmental Forces and Torques18 May 2021 | Applied Sciences, Vol. 11, No. 10Aerodynamic and gravity gradient based attitude control for CubeSats in the presence of environmental and spacecraft uncertaintiesActa Astronautica, Vol. 180 What's Popular Volume 44, Number 2February 2021 CrossmarkInformationCopyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAstrodynamicsAstronauticsAtmospheric ScienceAttitude ControlOrbital ManeuversOrbital PropertySatellitesSpace OrbitSpace Systems and VehiclesSpacecraft Attitude ControlSpacecrafts KeywordsAtmospheric DensityAerodynamic TorqueCubeSatAttitude StabilizationQuaternionsYawAdaptive Control MethodAttitude TrackingEarthAtmospheric DragAcknowledgmentsThis research is supported in part by the Air Force Office of Scientific Research award number FA9550-19-1-0169 and the Fulbright Colombia Commission. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring agency.PDF Received6 July 2020Accepted17 November 2020Published online29 December 2020

Referência(s)