Artigo Acesso aberto Revisado por pares

Springback prediction and validation in hot forming of a double-curved component in alloy 718

2021; Springer Science+Business Media; Volume: 14; Issue: 6 Linguagem: Inglês

10.1007/s12289-021-01615-x

ISSN

1960-6206

Autores

Lluís Pérez, Eva-Lis Odenberger, Mikael Schill, Fredrik Niklasson, Pia Åkerfeldt, Mats Oldenburg,

Tópico(s)

Microstructure and Mechanical Properties of Steels

Resumo

Abstract The demands associated with the production of advanced parts made of nickel-base superalloys are continuously increasing to meet the requirements of current environmental laws. The use of lightweight components in load-carrying aero-engine structures has the potential to significantly reduce fuel consumption and greenhouse gas emissions. Furthermore, the competitiveness of the aero-engine industry can benefit from reduced production costs and shorter development times while minimizing costly try-outs and increasing the efficiency of engines. The manufacturing process of aero-engine parts in superalloys at temperatures close to 950 °C produces reduced stamping force, residual stresses, and springback compared to traditional forming procedures occurring at room temperature. In this work, a hot forming procedure of a double-curved component in alloy 718 is studied. The mechanical properties of the material are determined between 20 and 1000 °C. The presence and nature of serrations in the stress–strain curves are assessed. The novel version of the anisotropic Barlat Yld2000-2D material model, which allows the input of thermo-mechanical data, is used in LS-DYNA to model the behaviour of the material at high temperatures. The effect of considering the stress-relaxation data on the predicted shape distortions is evaluated. The results show the importance of considering the thermo-mechanical anisotropic properties and stress-relaxation behaviour of the material to predict the final geometry of the component with high accuracy. The implementation of advanced material models in the finite element (FE) analyses, along with precise process conditions, is vital to produce lightweight components in advanced materials of interest to the aerospace industry.

Referência(s)