Artigo Produção Nacional Revisado por pares

Mesoarchean migmatites of the Carajás Province: From intra-arc melting to collision

2021; Elsevier BV; Volume: 388-389; Linguagem: Inglês

10.1016/j.lithos.2021.106078

ISSN

1872-6143

Autores

Marco Antônio Delinardo da Silva, Lena Virgínia Soares Monteiro, Ticiano José Saraiva dos Santos, Carolina Penteado Natividade Moreto, Soraya Damasceno Sousa, Jackeline Monteiro Faustinoni, Gustavo Henrique Coelho de Melo, Roberto Perez Xavier, Bruno Augusto Martins de Toledo,

Tópico(s)

earthquake and tectonic studies

Resumo

In the Carajás Domain, northern Carajás Province, Amazonian Craton, the oldest units encompass the Mesoarchean migmatites of the Xicrim-Cateté Orthogranulite and Xingu Complex. The Xicrim-Cateté Orthogranulite underwent early dehydration and late water-fluxed partial melting. The first process resulted in net-structured and schollen migmatites with a pargasite-bearing mafic granulite paleosome. The F-pargasite breakdown produced a neosome with peritectic enstatite, diopside, and plagioclase and a residual amphibole-free mafic granulite. The late water-fluxed partial melting generated quartzofeldspathic leucosomes in shear bands of the NW-SE-trending high-angle transcurrent shear zones. The Xingu Complex is composed of stromatic, net-structured, schollen and schlieren migmatites developed in the late water-fluxed partial melting event. These migmatites have orthogneiss and amphibolite paleosome and syn-tectonic quartzofeldspathic leucosome and biotite-rich melanosome oriented along a low angle NE-SW to NW-SE gneissic foliation. The Xicrim-Cateté paleosome age remains undefined, but the U–Pb zircon ages of the pyroxene-bearing neosome constraint the dehydration-melting to c. 3.06–2.93 Ga. The εHf data (−2.2 to +1.2) of the neosome tie the dehydration-melting of the pargasite-bearing granulite to the underplate of mantle melts. The Zr-Ti-Y content and Ti/V ratios of the pargasite-bearing granulite suggest a compositional shift of their protoliths from MORB to IAT, characterizing a scenario of subduction installation and magmatic evolution. The Xicrim-Cateté pyroxene-bearing neosome is geochemically similar to the Xingu orthogneiss. Both rocks have a TTG affinity and similar εHf values (+0.8 to +1.6) and crystallization ages (2.94 Ga). It indicates a common source for them and suggests that the dehydration partial melting of the primitive mafic crust produced a significant portion of the TTG felsic continental crust of the Carajás Domain. It probably occurred during the island-arc setting evolution between 3.06 and 2.93 Ga when supra-subduction mantle melts started to trigger the compositional differentiation of the mafic crust. The late water-fluxed partial melting was controlled by fluid influx into the structures developed during the regional deformation of the Carajás Domain at c. 2.89–2.85 Ga, likely associated with a collisional event in the Carajás Province.

Referência(s)
Altmetric
PlumX