Artigo Acesso aberto Revisado por pares

Distinct intramolecular interactions regulate autoinhibition of vinculin binding in αT-catenin and αE-catenin

2021; Elsevier BV; Volume: 296; Linguagem: Inglês

10.1016/j.jbc.2021.100582

ISSN

1083-351X

Autores

Jonathon A. Heier, Sabine Pokutta, Ian W. Dale, Sun Kyung Kim, Andrew P. Hinck, William I. Weis, Adam V. Kwiatkowski,

Tópico(s)

Force Microscopy Techniques and Applications

Resumo

α-Catenin binds directly to β-catenin and connects the cadherin–catenin complex to the actin cytoskeleton. Tension regulates α-catenin conformation. Actomyosin-generated force stretches the middle (M)-region to relieve autoinhibition and reveal a binding site for the actin-binding protein vinculin. It is not known whether the intramolecular interactions that regulate epithelial (αE)-catenin binding are conserved across the α-catenin family. Here, we describe the biochemical properties of testes (αT)-catenin, an α-catenin isoform critical for cardiac function and how intramolecular interactions regulate vinculin-binding autoinhibition. Isothermal titration calorimetry showed that αT-catenin binds the β-catenin–N-cadherin complex with a similar low nanomolar affinity to that of αE-catenin. Limited proteolysis revealed that the αT-catenin M-region adopts a more open conformation than αE-catenin. The αT-catenin M-region binds the vinculin N-terminus with low nanomolar affinity, indicating that the isolated αT-catenin M-region is not autoinhibited and thereby distinct from αE-catenin. However, the αT-catenin head (N- and M-regions) binds vinculin 1000-fold more weakly (low micromolar affinity), indicating that the N-terminus regulates the M-region binding to vinculin. In cells, αT-catenin recruitment of vinculin to cell–cell contacts requires the actin-binding domain and actomyosin-generated tension, indicating that force regulates vinculin binding. Together, our results show that the αT-catenin N-terminus is required to maintain M-region autoinhibition and modulate vinculin binding. We postulate that the unique molecular properties of αT-catenin allow it to function as a scaffold for building specific adhesion complexes. α-Catenin binds directly to β-catenin and connects the cadherin–catenin complex to the actin cytoskeleton. Tension regulates α-catenin conformation. Actomyosin-generated force stretches the middle (M)-region to relieve autoinhibition and reveal a binding site for the actin-binding protein vinculin. It is not known whether the intramolecular interactions that regulate epithelial (αE)-catenin binding are conserved across the α-catenin family. Here, we describe the biochemical properties of testes (αT)-catenin, an α-catenin isoform critical for cardiac function and how intramolecular interactions regulate vinculin-binding autoinhibition. Isothermal titration calorimetry showed that αT-catenin binds the β-catenin–N-cadherin complex with a similar low nanomolar affinity to that of αE-catenin. Limited proteolysis revealed that the αT-catenin M-region adopts a more open conformation than αE-catenin. The αT-catenin M-region binds the vinculin N-terminus with low nanomolar affinity, indicating that the isolated αT-catenin M-region is not autoinhibited and thereby distinct from αE-catenin. However, the αT-catenin head (N- and M-regions) binds vinculin 1000-fold more weakly (low micromolar affinity), indicating that the N-terminus regulates the M-region binding to vinculin. In cells, αT-catenin recruitment of vinculin to cell–cell contacts requires the actin-binding domain and actomyosin-generated tension, indicating that force regulates vinculin binding. Together, our results show that the αT-catenin N-terminus is required to maintain M-region autoinhibition and modulate vinculin binding. We postulate that the unique molecular properties of αT-catenin allow it to function as a scaffold for building specific adhesion complexes. The cadherin–catenin complex that forms the core of the adherens junction (AJ) is required for intercellular adhesion and tissue integrity (1Ratheesh A. Yap A.S. A bigger picture: Classical cadherins and the dynamic actin cytoskeleton.Nat. Rev. Mol. Cell Biol. 2012; 13: 673-679Crossref PubMed Scopus (100) Google Scholar, 2Rubsam M. Broussard J.A. Wickstrom S.A. Nekrasova O. Green K.J. Niessen C.M. Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: An evolutionary perspective.Cold Spring Harb. Perspect. Biol. 2018; 10a029207Crossref PubMed Scopus (41) Google Scholar, 3Mege R.M. Ishiyama N. Integration of cadherin adhesion and cytoskeleton at adherens junctions.Cold Spring Harb. Perspect. Biol. 2017; 9a028738Crossref PubMed Scopus (82) Google Scholar). Classical cadherins are single-pass transmembrane proteins with an extracellular domain that forms trans-interactions with cadherins on adjacent cells (4Priest A.V. Shafraz O. Sivasankar S. Biophysical basis of cadherin mediated cell-cell adhesion.Exp. Cell Res. 2017; 358: 10-13Crossref PubMed Scopus (20) Google Scholar, 5Shapiro L. Weis W.I. Structure and biochemistry of cadherins and catenins.Cold Spring Harb. Perspect. Biol. 2009; 1a003053Crossref PubMed Scopus (273) Google Scholar, 6Meng W.X. Takeichi M. Adherens junction: Molecular architecture and regulation.Cold Spring Harb. Perspect. Biol. 2009; 1a002899Crossref PubMed Scopus (336) Google Scholar). The adhesive properties of classical cadherins are driven by the recruitment of cytosolic catenin proteins to the cadherin tail: p120-catenin binds to the juxtamembrane domain, and β-catenin binds to the distal part of the tail. β-Catenin recruits α-catenin, a mechanoresponsive actin-binding protein (7Maiden S.L. Hardin J. The secret life of alpha-catenin: Moonlighting in morphogenesis.J. Cell Biol. 2011; 195: 543-552Crossref PubMed Scopus (79) Google Scholar, 8Rimm D.L. Koslov E.R. Kebriaei P. Cianci C.D. Morrow J.S. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex.Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 8813-8817Crossref PubMed Scopus (612) Google Scholar, 9Yamada S. Pokutta S. Drees F. Weis W.I. Nelson W.J. Deconstructing the cadherin-catenin-actin complex.Cell. 2005; 123: 889-901Abstract Full Text Full Text PDF PubMed Scopus (746) Google Scholar, 10Drees F. Pokutta S. Yamada S. Nelson W.J. Weis W.I. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly.Cell. 2005; 123: 903-915Abstract Full Text Full Text PDF PubMed Scopus (740) Google Scholar, 11Buckley C.D. Tan J. Anderson K.L. Hanein D. Volkmann N. Weis W.I. Nelson W.J. Dunn A.R. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.Science. 2014; 346: 1254211Crossref PubMed Scopus (326) Google Scholar, 12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar, 13Ishiyama N. Sarpal R. Wood M.N. Barrick S.K. Nishikawa T. Hayashi H. Kobb A.B. Flozak A.S. Yemelyanov A. Fernandez-Gonzalez R. Yonemura S. Leckband D.E. Gottardi C.J. Tepass U. Ikura M. Force-dependent allostery of the alpha-catenin actin-binding domain controls adherens junction dynamics and functions.Nat. Commun. 2018; 9: 5121Crossref PubMed Scopus (30) Google Scholar). The AJ mechanically couples and integrates the actin cytoskeletons between cells to allow dynamic adhesion and tissue morphogenesis (3Mege R.M. Ishiyama N. Integration of cadherin adhesion and cytoskeleton at adherens junctions.Cold Spring Harb. Perspect. Biol. 2017; 9a028738Crossref PubMed Scopus (82) Google Scholar). The best characterized member of the α-catenin family of proteins is mammalian epithelial (αE)-catenin. Structurally, it is composed of 5 four-helix bundles connected to a C-terminal five-helix bundle by a flexible linker (14Ishiyama N. Tanaka N. Abe K. Yang Y.J. Abbas Y.M. Umitsu M. Nagar B. Bueler S.A. Rubinstein J.L. Takeichi M. Ikura M. An autoinhibited structure of alpha-catenin and its implications for vinculin recruitment to adherens junctions.J. Biol. Chem. 2013; 288: 15913-15925Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 15Rangarajan E.S. Izard T. Dimer asymmetry defines alpha-catenin interactions.Nat. Struct. Mol. Biol. 2013; 20: 188-193Crossref PubMed Scopus (77) Google Scholar, 16Terekhova K. Pokutta S. Kee Y.S. Li J. Tajkhorshid E. Fuller G. Dunn A.R. Weis W.I. Binding partner- and force-promoted changes in alphaE-catenin conformation probed by native cysteine labeling.Sci. Rep. 2019; 9: 15375Crossref PubMed Scopus (3) Google Scholar). The two N-terminal four-helix bundles form the N-domain that binds β-catenin and mediates homodimerization (12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar, 17Nieset J.E. Redfield A.R. Jin F. Knudsen K.A. Johnson K.R. Wheelock M.J. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin.J. Cell Sci. 1997; 110: 1013-1022Crossref PubMed Google Scholar, 18Koslov E.R. Maupin P. Pradhan D. Morrow J.S. Rimm D.L. Alpha-catenin can form asymmetric homodimeric complexes and/or heterodimeric complexes with beta-catenin.J. Biol. Chem. 1997; 272: 27301-27306Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar, 19Pokutta S. Weis W.I. Structure of the dimerization and beta-catenin-binding region of alpha-catenin.Mol. Cell. 2000; 5: 533-543Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar). The central 3 four-helix bundles form the middle (M)-region that functions as a mechanosensor (20Imamura Y. Itoh M. Maeno Y. Tsukita S. Nagafuchi A. Functional domains of alpha-catenin required for the strong state of cadherin-based cell adhesion.J. Cell Biol. 1999; 144: 1311-1322Crossref PubMed Scopus (224) Google Scholar, 21Pokutta S. Drees F. Takai Y. Nelson W.J. Weis W.I. Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin.J. Biol. Chem. 2002; 277: 18868-18874Abstract Full Text Full Text PDF PubMed Scopus (183) Google Scholar, 22Yang J. Dokurno P. Tonks N.K. Barford D. Crystal structure of the M-fragment of alpha-catenin: Implications for modulation of cell adhesion.EMBO J. 2001; 20: 3645-3656Crossref PubMed Scopus (64) Google Scholar, 23Choi H.J. Pokutta S. Cadwell G.W. Bobkov A.A. Bankston L.A. Liddington R.C. Weis W.I. AlphaE-catenin is an autoinhibited molecule that coactivates vinculin.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 8576-8581Crossref PubMed Scopus (92) Google Scholar, 24Yonemura S. Wada Y. Watanabe T. Nagafuchi A. Shibata M. Alpha-catenin as a tension transducer that induces adherens junction development.Nat. Cell Biol. 2010; 12: 533-542Crossref PubMed Scopus (605) Google Scholar, 25Li J. Newhall J. Ishiyama N. Gottardi C. Ikura M. Leckband D.E. Tajkhorshid E. Structural determinants of the mechanical stability of alpha-catenin.J. Biol. Chem. 2015; 290: 18890-18903Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar). The C-terminal five-helix bundle forms the F-actin-binding domain (ABD) (11Buckley C.D. Tan J. Anderson K.L. Hanein D. Volkmann N. Weis W.I. Nelson W.J. Dunn A.R. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.Science. 2014; 346: 1254211Crossref PubMed Scopus (326) Google Scholar, 13Ishiyama N. Sarpal R. Wood M.N. Barrick S.K. Nishikawa T. Hayashi H. Kobb A.B. Flozak A.S. Yemelyanov A. Fernandez-Gonzalez R. Yonemura S. Leckband D.E. Gottardi C.J. Tepass U. Ikura M. Force-dependent allostery of the alpha-catenin actin-binding domain controls adherens junction dynamics and functions.Nat. Commun. 2018; 9: 5121Crossref PubMed Scopus (30) Google Scholar, 26Xu X.P. Pokutta S. Torres M. Swift M.F. Hanein D. Volkmann N. Weis W.I. Structural basis of alphaE-catenin-F-actin catch bond behavior.Elife. 2020; 9e60878Crossref PubMed Google Scholar, 27Mei L. Espinosa de Los Reyes S. Reynolds M.J. Leicher R. Liu S. Alushin G.M. Molecular mechanism for direct actin force-sensing by alpha-catenin.Elife. 2020; 9e62514Crossref PubMed Google Scholar). F-actin binding is allosterically regulated: αE-catenin can bind F-actin readily as a homodimer, but when in complex with β-catenin, mechanical force is required for strong F-actin binding (9Yamada S. Pokutta S. Drees F. Weis W.I. Nelson W.J. Deconstructing the cadherin-catenin-actin complex.Cell. 2005; 123: 889-901Abstract Full Text Full Text PDF PubMed Scopus (746) Google Scholar, 10Drees F. Pokutta S. Yamada S. Nelson W.J. Weis W.I. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly.Cell. 2005; 123: 903-915Abstract Full Text Full Text PDF PubMed Scopus (740) Google Scholar, 11Buckley C.D. Tan J. Anderson K.L. Hanein D. Volkmann N. Weis W.I. Nelson W.J. Dunn A.R. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.Science. 2014; 346: 1254211Crossref PubMed Scopus (326) Google Scholar, 26Xu X.P. Pokutta S. Torres M. Swift M.F. Hanein D. Volkmann N. Weis W.I. Structural basis of alphaE-catenin-F-actin catch bond behavior.Elife. 2020; 9e60878Crossref PubMed Google Scholar). In addition, when tension is applied to αE-catenin, salt bridge interactions within the M-region are broken, allowing the domain to unfurl and reveal cryptic binding sites for other cytoskeletal binding proteins such as vinculin (16Terekhova K. Pokutta S. Kee Y.S. Li J. Tajkhorshid E. Fuller G. Dunn A.R. Weis W.I. Binding partner- and force-promoted changes in alphaE-catenin conformation probed by native cysteine labeling.Sci. Rep. 2019; 9: 15375Crossref PubMed Scopus (3) Google Scholar, 23Choi H.J. Pokutta S. Cadwell G.W. Bobkov A.A. Bankston L.A. Liddington R.C. Weis W.I. AlphaE-catenin is an autoinhibited molecule that coactivates vinculin.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 8576-8581Crossref PubMed Scopus (92) Google Scholar, 24Yonemura S. Wada Y. Watanabe T. Nagafuchi A. Shibata M. Alpha-catenin as a tension transducer that induces adherens junction development.Nat. Cell Biol. 2010; 12: 533-542Crossref PubMed Scopus (605) Google Scholar, 25Li J. Newhall J. Ishiyama N. Gottardi C. Ikura M. Leckband D.E. Tajkhorshid E. Structural determinants of the mechanical stability of alpha-catenin.J. Biol. Chem. 2015; 290: 18890-18903Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, 28le Duc Q. Shi Q. Blonk I. Sonnenberg A. Wang N. Leckband D. de Rooij J. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner.J. Cell Biol. 2010; 189: 1107-1115Crossref PubMed Scopus (405) Google Scholar, 29Yao M. Qiu W. Liu R. Efremov A.K. Cong P. Seddiki R. Payre M. Lim C.T. Ladoux B. Mege R.M. Yan J. Force-dependent conformational switch of alpha-catenin controls vinculin binding.Nat. Commun. 2014; 5: 4525Crossref PubMed Scopus (237) Google Scholar, 30Barrick S. Li J. Kong X.Y. Ray A. Tajkhorshid E. Leckband D. Salt bridges gate alpha-catenin activation at intercellular junctions.Mol. Biol. Cell. 2018; 29: 111-122Crossref PubMed Google Scholar, 31Maki K. Han S.W. Hirano Y. Yonemura S. Hakoshima T. Adachi T. Mechano-adaptive sensory mechanism of alpha-catenin under tension.Sci. Rep. 2016; 6: 24878Crossref PubMed Scopus (35) Google Scholar, 32Maki K. Han S.W. Hirano Y. Yonemura S. Hakoshima T. Adachi T. Real-time TIRF observation of vinculin recruitment to stretched alpha-catenin by AFM.Sci. Rep. 2018; 8: 1575Crossref PubMed Scopus (11) Google Scholar). The recruitment of these proteins is thought to help stabilize the AJ in response to increased tension and further integrate the actin cytoskeleton across cell–cell contacts (24Yonemura S. Wada Y. Watanabe T. Nagafuchi A. Shibata M. Alpha-catenin as a tension transducer that induces adherens junction development.Nat. Cell Biol. 2010; 12: 533-542Crossref PubMed Scopus (605) Google Scholar, 28le Duc Q. Shi Q. Blonk I. Sonnenberg A. Wang N. Leckband D. de Rooij J. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner.J. Cell Biol. 2010; 189: 1107-1115Crossref PubMed Scopus (405) Google Scholar, 31Maki K. Han S.W. Hirano Y. Yonemura S. Hakoshima T. Adachi T. Mechano-adaptive sensory mechanism of alpha-catenin under tension.Sci. Rep. 2016; 6: 24878Crossref PubMed Scopus (35) Google Scholar, 33Twiss F. Le Duc Q. Van Der Horst S. Tabdili H. Van Der Krogt G. Wang N. Rehmann H. Huveneers S. Leckband D.E. De Rooij J. Vinculin-dependent cadherin mechanosensing regulates efficient epithelial barrier formation.Biol. Open. 2012; 1: 1128-1140Crossref PubMed Scopus (72) Google Scholar, 34Merkel C.D. Li Y. Raza Q. Stolz D.B. Kwiatkowski A.V. Vinculin anchors contractile actin to the cardiomyocyte adherens junction.Mol. Biol. Cell. 2019; 30: 2639-2650Crossref PubMed Scopus (5) Google Scholar, 35Thomas W.A. Boscher C. Chu Y.S. Cuvelier D. Martinez-Rico C. Seddiki R. Heysch J. Ladoux B. Thiery J.P. Mege R.M. Dufour S. Alpha-catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength.J. Biol. Chem. 2013; 288: 4957-4969Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar). Three α-catenin family proteins are expressed in mammals: the ubiquitous αE-catenin, neuronal (αN)-catenin, and testes (αT)-catenin (36Zhao Z.M. Reynolds A.B. Gaucher E.A. The evolutionary history of the catenin gene family during metazoan evolution.BMC Evol. Biol. 2011; 11: 198Crossref PubMed Scopus (35) Google Scholar, 37Hulpiau P. Gul I.S. van Roy F. New insights into the evolution of metazoan cadherins and catenins.Prog. Mol. Biol. Transl. 2013; 116: 71-94Crossref PubMed Scopus (35) Google Scholar). αE-catenin and αN-catenin are 81% identical and 91% similar in amino acid sequence. αT-catenin is 58% identical and 77% similar to αE-catenin and αN-catenin, making it the most divergent of the family (36Zhao Z.M. Reynolds A.B. Gaucher E.A. The evolutionary history of the catenin gene family during metazoan evolution.BMC Evol. Biol. 2011; 11: 198Crossref PubMed Scopus (35) Google Scholar, 37Hulpiau P. Gul I.S. van Roy F. New insights into the evolution of metazoan cadherins and catenins.Prog. Mol. Biol. Transl. 2013; 116: 71-94Crossref PubMed Scopus (35) Google Scholar, 38Wickline E.D. Dale I.W. Merkel C.D. Heier J.A. Stolz D.B. Kwiatkowski A.V. AlphaT-catenin is a constitutive actin-binding alpha-catenin that directly couples the Cadherin.Catenin complex to actin filaments.J. Biol. Chem. 2016; 291: 15687-15699Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar). αT-catenin is predominantly expressed in the heart, testes, brain, and spinal cord (39Janssens B. Goossens S. Staes K. Gilbert B. van Hengel J. Colpaert C. Bruyneel E. Mareel M. van Roy F. AlphaT-catenin: A novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion.J. Cell Sci. 2001; 114: 3177-3188Crossref PubMed Google Scholar, 40Chiarella S.E. Rabin E.E. Ostilla L.A. Flozak A.S. Gottardi C.J. AlphaT-catenin: A developmentally dispensable, disease-linked member of the alpha-catenin family.Tissue Barriers. 2018; 6e1463896Crossref PubMed Scopus (3) Google Scholar). In the heart, it localizes to the intercalated disc (ICD), a specialized adhesive structure that maintains mechanical coupling and chemical communication between cardiomyocytes (41Goossens S. Janssens B. Bonne S. De Rycke R. Braet F. van Hengel J. van Roy F. A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs.J. Cell Sci. 2007; 120: 2126-2136Crossref PubMed Scopus (88) Google Scholar, 42Vite A. Radice G.L. N-cadherin/catenin complex as a master regulator of intercalated disc function.Cell Commun. Adhes. 2014; 21: 169-179Crossref PubMed Scopus (30) Google Scholar). In mice, loss of αT-catenin from the heart causes dilated cardiomyopathy, and mutations in αT-catenin are linked to arrhythmogenic ventricular cardiomyopathy in humans (43Li J. Goossens S. van Hengel J. Gao E. Cheng L. Tyberghein K. Shang X. De Rycke R. van Roy F. Radice G.L. Loss of alphaT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia.J. Cell Sci. 2012; 125: 1058-1067Crossref PubMed Scopus (60) Google Scholar, 44van Hengel J. Calore M. Bauce B. Dazzo E. Mazzotti E. De Bortoli M. Lorenzon A. Li Mura I.E. Beffagna G. Rigato I. Vleeschouwers M. Tyberghein K. Hulpiau P. van Hamme E. Zaglia T. et al.Mutations in the area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy.Eur. Heart J. 2013; 34: 201-210Crossref PubMed Scopus (123) Google Scholar). In addition to cardiomyopathy, αT-catenin is linked to multiple human diseases, including asthma, neurological disease, and cancer (40Chiarella S.E. Rabin E.E. Ostilla L.A. Flozak A.S. Gottardi C.J. AlphaT-catenin: A developmentally dispensable, disease-linked member of the alpha-catenin family.Tissue Barriers. 2018; 6e1463896Crossref PubMed Scopus (3) Google Scholar, 45Folmsbee S.S. Morales-Nebreda L. Van Hengel J. Tyberghein K. Van Roy F. Budinger G.R. Bryce P.J. Gottardi C.J. The cardiac protein alphaT-catenin contributes to chemical-induced asthma.Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 308: L253-258Crossref PubMed Scopus (13) Google Scholar, 46Folmsbee S.S. Wilcox D.R. Tyberghein K. De Bleser P. Tourtellotte W.G. van Hengel J. van Roy F. Gottardi C.J. AlphaT-catenin in restricted brain cell types and its potential connection to autism.J. Mol. Psychiatry. 2016; 4: 2Crossref PubMed Scopus (12) Google Scholar). Despite a growing awareness of its importance in human disease, the molecular properties and ligand interactions of αT-catenin remain poorly understood. Our previous work revealed that αT-catenin, unlike mammalian αE-catenin, is a monomer in the solution that can bind to F-actin with low micromolar affinity in the absence of tension. F-actin binding is also not allosterically regulated, as the β-catenin–αT-catenin complex binds to F-actin with the same affinity as the αT-catenin monomer (38Wickline E.D. Dale I.W. Merkel C.D. Heier J.A. Stolz D.B. Kwiatkowski A.V. AlphaT-catenin is a constitutive actin-binding alpha-catenin that directly couples the Cadherin.Catenin complex to actin filaments.J. Biol. Chem. 2016; 291: 15687-15699Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar). Single-molecule pulling experiments have shown the αT-catenin M-region to be mechanoresponsive as it unfurls in a force range similar to αE-catenin (47Pang S.M. Le S. Kwiatkowski A.V. Yan J. Mechanical stability of alphaT-catenin and its activation by force for vinculin binding.Mol. Biol. Cell. 2019; 30: 1930-1937Crossref PubMed Scopus (8) Google Scholar). Here we show that αT-catenin associates with the components of the cadherin–catenin complex with an affinity similar to αE-catenin in vitro, revealing that they may compete with one another for binding β-catenin at the plasma membrane. We also show that the M-region of αT-catenin is not autoinhibited and can bind the vinculin N-terminus in the absence of tension with strong affinity. Unlike αE-catenin, however, when the N-terminus of αT-catenin is attached to the M-region, the affinity for vinculin drops significantly. This indicates that interdomain interactions between the N-terminus and the M-region of αT-catenin regulate its interaction with vinculin. We measured the recruitment of vinculin to cell–cell contacts and found that, despite the distinct mechanism of regulation, recruitment of vinculin is still tension dependent. Our findings indicate that the way in which tension regulates vinculin binding differs between αE-catenin and αT-catenin. We postulate that this mechanism is important for the ability of αT-catenin to build specific and distinct molecular complexes at AJs. We characterized the interaction between αT-catenin and β-catenin by isothermal titration calorimetry (ITC) using purified recombinant proteins. We used the head region (comprising the N- and M-domains) of αT-catenin (aa 1–659, Fig. 1A) for these experiments because it is more stable than full-length αT-catenin and yields sufficiently high protein concentrations for ITC. Past studies revealed that the αE-catenin head region (aa 1–651) binds β-catenin and the β-catenin–E-cadherin tail complex with a similar affinity to full-length αE-catenin (12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar). We observed that the αT-catenin head binds β-catenin with a dissociation constant ∼250 nM (Fig. 1B; Table 1). The affinity of αT-catenin for β-catenin is an order of magnitude weaker than the association of αE-catenin or αN-catenin for β-catenin (15–20 nM; (12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar)).Table 1ITC measurements of αT-catenin fragments binding to β-catenin or β-catenin–N-cadherin cytoplasmic tail complexProteinsKd (nM)ΔH (kcal/mol)TΔS (kcal/mol)ΔG (kcal/mol)#αT-catenin head (1–659) + β-catenin264.1 ± 109.1−14.6 ± 2.1−5.6−9.05αT-catenin head (1–659) + β-catenin–Ncadcyto5.6 ± 0.6−27.0 ± 0.2−15.8−11.33αT-catenin N1-N2 (1–259) + β-catenin–Ncadcyto6.9 ± 12.0−18.9 ± 1.0−7.8−11.11Ncadcyto, N-cadherin tail. Open table in a new tab Ncadcyto, N-cadherin tail. Cadherin tail binding to β-catenin strengthens the affinity between β-catenin and α-catenin (12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar). N-cadherin is the primary classical cadherin expressed in cardiomyocytes (48Kostetskii I. Li J. Xiong Y. Zhou R. Ferrari V.A. Patel V.V. Molkentin J.D. Radice G.L. Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure.Circ. Res. 2005; 96: 346-354Crossref PubMed Scopus (244) Google Scholar). We tested if the N-cadherin tail (Ncadcyto) influences the αT-catenin–β-catenin interaction by titrating the β-catenin–Ncadcyto complex into αT-catenin head (Fig. 1C). The affinity of this interaction was 5 to 6 nM (Table 1), indicating that αT-catenin binds to the cadherin–β-catenin complex an order of magnitude more strongly than to β-catenin alone. This affinity is similar to the 1- to 2-nM affinity observed between the cadherin tail–β-catenin complex and αE-catenin or αN-catenin (12Pokutta S. Choi H.J. Ahlsen G. Hansen S.D. Weis W.I. Structural and thermodynamic characterization of cadherin.beta-catenin.alpha-catenin complex formation.J. Biol. Chem. 2014; 289: 13589-13601Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar) and suggests that αT-catenin can effectively compete with αE-catenin for binding to the membrane-associated cadherin–β-catenin complex. Full-length αT-catenin is primarily a monomer in the solution, although it does have homodimerization potential in vitro (38Wickline E.D. Dale I.W. Merkel C.D. Heier J.A. Stolz D.B. Kwiatkowski A.V. AlphaT-catenin is a constitutive actin-binding alpha-catenin that directly couples the Cadherin.Catenin complex to actin filaments.J. Biol. Chem. 2016; 291: 15687-15699Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar). The best evidence for dimerization potential comes from a point mutation linked to arrhythmogenic ventricular cardiomyopathy in humans, V94D, that renders αT-catenin an obligate homodimer (38Wickline E.D. Dale I.W. Merkel C.D. Heier J.A. Stolz D.B. Kwiatkowski A.V. AlphaT-catenin is a constitutive actin-binding alpha-catenin that directly couples the Cadherin.Catenin complex to actin filaments.J. Biol. Chem. 2016; 291: 15687-15699Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar, 44van Hengel J. Calore M. Bauce B. Dazzo E. Mazzotti E. De Bortoli M. Lorenzon A. Li Mura I.E. Beffagna G. Rigato I. Vleeschouwers M. Tyberghein K. Hulpiau P. van Hamme E. Zaglia T. et al.Mutations in the area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy.Eur. Heart J. 2013; 34: 201-210Crossref PubMed Scopus (123) Google Scholar). We analyzed the oligomerization properties of the αT-catenin N1-N2 (aa 1–259, Fig. 1A) and compared them to the V94D mutant. Analytical size-exclusion chromatography of αT-catenin WT N1-N2 and V94D N1-N2 revealed that WT N1-N2 eluted as a single monomer species (Fig. 2A, blue line), whereas the V94D mutant eluted as a dimer species (Fig. 2A, red line). We then analyzed the oligomeric state of the αT-catenin N-terminus by cross-linking. Increasing concentrations of αT-catenin N1-N2 were incubated with or without the cross-linker bis(sulfosuccinimidyl)suberate (BS3) at 4 °C or 37 °C and the resulting products analyzed by SDS-PAGE. As expected, the αT-catenin N1-N2 migrated as a 25-kDa protein in the absence of a cross-linker (Fig. 2B). Incubation with BS3 did not affect migration at low concentrations, although at higher concentrations (4 and 8 μM), larger species were detected at both temperatures. In contrast, αT-catenin V94D N1-N2 ran as 50-kDa protein in the presence of BS3 at all concentrations tested (Fig. 2C), indicating a cross-linked dimer. We conclude that the αT-catenin N terminus, similar to full-length protein, is primarily a monomer in the solution. We then teste

Referência(s)