Artigo Acesso aberto Revisado por pares

Enabling high‐throughput biology with flexible open‐source automation

2021; Springer Nature; Volume: 17; Issue: 3 Linguagem: Inglês

10.15252/msb.20209942

ISSN

1744-4292

Autores

Emma J. Chory, Dana Gretton, Erika A. DeBenedictis, Kevin M. Esvelt,

Tópico(s)

CRISPR and Genetic Engineering

Resumo

Article25 March 2021Open Access Transparent process Enabling high-throughput biology with flexible open-source automation Emma J Chory orcid.org/0000-0001-8541-9289 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Broad Institute of MIT and Harvard, Cambridge, MA, USAThese authors contributed equally to this work Search for more papers by this author Dana W Gretton orcid.org/0000-0003-4726-9149 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USAThese authors contributed equally to this workAll correspondence regarding Pyhamilton software development should be directed to DWG: ([email protected], https://github.com/dgretton/). Search for more papers by this author Erika A DeBenedictis orcid.org/0000-0002-7933-2651 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Search for more papers by this author Kevin M Esvelt Corresponding Author [email protected] orcid.org/0000-0001-8797-3945 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Search for more papers by this author Emma J Chory orcid.org/0000-0001-8541-9289 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Broad Institute of MIT and Harvard, Cambridge, MA, USAThese authors contributed equally to this work Search for more papers by this author Dana W Gretton orcid.org/0000-0003-4726-9149 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USAThese authors contributed equally to this workAll correspondence regarding Pyhamilton software development should be directed to DWG: ([email protected], https://github.com/dgretton/). Search for more papers by this author Erika A DeBenedictis orcid.org/0000-0002-7933-2651 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Search for more papers by this author Kevin M Esvelt Corresponding Author [email protected] orcid.org/0000-0001-8797-3945 Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Search for more papers by this author Author Information Emma J Chory1,2,3, Dana W Gretton1, Erika A DeBenedictis1,4 and Kevin M Esvelt *,1 1Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA 2Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA 3Broad Institute of MIT and Harvard, Cambridge, MA, USA 4Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA *Corresponding author. Tel: +1 617 715 2615; E-mail: [email protected] Mol Syst Biol (2021)17:e9942https://doi.org/10.15252/msb.20209942 All correspondence regarding Pyhamilton software development should be directed to DWG: ([email protected], https://github.com/dgretton/). PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Abstract Our understanding of complex living systems is limited by our capacity to perform experiments in high throughput. While robotic systems have automated many traditional hand-pipetting protocols, software limitations have precluded more advanced maneuvers required to manipulate, maintain, and monitor hundreds of experiments in parallel. Here, we present Pyhamilton, an open-source Python platform that can execute complex pipetting patterns required for custom high-throughput experiments such as the simulation of metapopulation dynamics. With an integrated plate reader, we maintain nearly 500 remotely monitored bacterial cultures in log-phase growth for days without user intervention by taking regular density measurements to adjust the robotic method in real-time. Using these capabilities, we systematically optimize bioreactor protein production by monitoring the fluorescent protein expression and growth rates of a hundred different continuous culture conditions in triplicate to comprehensively sample the carbon, nitrogen, and phosphorus fitness landscape. Our results demonstrate that flexible software can empower existing hardware to enable new types and scales of experiments, empowering areas from biomanufacturing to fundamental biology. SYNOPSIS An open-source Python platform enables advanced liquid handling robots to perform a variety of complex high-throughput experiments that could never be performed manually. Bioautomation can benefit from flexible, easily shared protocols in a widely used language. Custom techniques such as plaque assays can be readily automated. 480 bacterial turbidostats using 100 different media compositions areused to map the metabolic fitness landscape for recombinant protein production. Introduction Comprehensive, well-replicated experiments are foundational to rigorous science, but humans can only perform so many actions simultaneously. One possible solution is automation, which has been widely implemented in biotechnology (Sparkes et al, 2010; Appleton et al, 2017; Freemont, 2019) to facilitate routine tasks involved in DNA sequencing (Meldrum, 2000), chemical synthesis (Ley et al, 2015), drug discovery (Schneider, 2018), and molecular biology (Smanski et al, 2014). In principle, flexibly programmable robots could enable diverse experiments requiring conditions and replicate numbers beyond the capabilities of human researchers across a range of disciplines (Vasilev et al, 2011; Hans et al, 2018; Keller et al, 2019). However, existing software for liquid-handling robots focuses narrowly on automating protocols designed for hand pipettes, while foundry languages such as Antha and remote labs such as Emerald Cloud focus on automating workflows rather than expanding experimental limits. As such, even labs with well-established high-throughput infrastructures struggle to utilize the full potential of their robots, precluding many complex experiments that require flexible programming (Appleton et al, 2017). Bioautomation lags behind the advancing field of manufacturing, where robots are expected to be task-flexible, responsive to new situations, and interactive with humans or remote management systems when ambiguous situations or errors arise (Appleton et al, 2017). A key limitation is the lack of a comprehensive, suitably abstract, and accessible software ecosystem (Bär et al, 2012; Linshiz et al, 2014; Walsh et al, 2019). Though bioinformatics is increasingly open-sourced (Gentleman et al, 2004; Cock et al, 2009), bioautomation has been slow to adopt key practices such as modularity, version control, and asynchronous programming. To enable flexible high-throughput experimentation, we developed Pyhamilton, a Python package that facilitates high-throughput operations within the laboratory, with protocols that can be easily shared and modified. Further, Pyhamilton allows liquid-handling robots to execute previously unimaginable and increasingly impressive methods. With this package, users can run robot simulations to troubleshoot and plan experiments, schedule experimental processes, implement error handling for quick troubleshooting, and easily integrate robots with external equipment. Results Pyhamilton enables Hamilton STAR, STARlet, and VANTAGE liquid-handling robots to be programmed using Python. This allows for robotic method development to benefit from standard software paradigms, including exception handling, version control, object-oriented programming, and other cornerstone computer science principles (Table EV1, Movie EV1). Pyhamilton seamlessly connects with Hamilton robots (Appendix Fig S1), can interface with custom peripherals (Fig 1A), and contains unique Python classes corresponding to robotic actions (i.e. aspirate and dispense) and consumables (i.e. plates and pipette tips) (See Dataset EV1). To enable method troubleshooting, Pyhamilton can also simulate methods through Hamilton run control software (Movies EV2–EV4) and incorporate any Python package (i.e. enabling error notifications via push, text message, or Slack). Finally, in addition to the functionalities we present, researchers can now also develop their own flexible code that may be useful for increasingly specialized applications. Figure 1. Example Pyhamilton applications Generalizable Python outline for writing custom Pyhamilton code to interface with robot and integrated equipment such as plate readers (e.g., ClarioStar) and custom pump arrays. Expanded robot capabilities allow for improved throughput of laboratory assays across 24-well plates. Example code required to run a bacterial assay across multiple simultaneous plates. Code for bacteriophage plaque assay is shown (see supplemental methods). Implementing complex and arbitrary bi-directional liquid handling to simulate experiments such as unbounded (left) or bounded (right) population flow across a geographic region, such as a river. Geographic “barriers” described in matrix format Simulation of bounded and unbounded migration (top), and visualization of the liquid patterns executed by the robot each iteration (bottom). Solid blue box designates “high” geographic barrier, dashed blue box designates a “medium” geographic barrier. Example code required to run population dynamics simulations, using a sparse matrix to assign source wells, destination wells, and volume transfer fractions. Real-time monitoring of on-deck turbidostats enables feedback control to equilibrate cultures to a set density. Plate reader measurements for OD (top), and respective estimated growth estimates (bottom) obtained from data from 24 replicates. Data are smoothed with rolling mean and outlier points are excluded. OD set-point shown in red. Example code required to maintain on-deck turbidostats using a transfer function to calculate k-estimates and volume transfer rates. Download figure Download PowerPoint Enabling improved throughput of basic robotic tasks Complex procedures are built from simple tasks, but the capabilities of a pipetting robot are limited by standard liquid-handling software. For example, an 8-channel head cannot be readily programmed to pipette into two 24-well plates simultaneously, although doing so is physically possible (Fig 1B). This limits many high-throughput assays: automation of methods involving 24-well plates is no faster than hand-pipetting, since robots and researchers pipette one plate at a time. Thus, we first demonstrate that Pyhamilton easily enables pipetting of liquids over two 24-well plates simultaneously (Fig 1B and C, Table EV2), thereby doubling the speed (Movie EV5). This can be critical for bacterial assays involving heated liquid agar which solidifies quickly. This simple example demonstrates the advantages of making full use of the robot’s mechanical capabilities, freed from software constraints. Enabling liquid transfers requiring complex calculations Despite having far greater physical capabilities than a fixed-volume multichannel pipette, it is difficult to implement complex liquid transfer patterns involving different volumes on a robot because programming using standard software is prohibitively monotonous (Movie EV1). The ability to faithfully execute experiments involving hundreds of different pipetting volumes could enable new types of applications such as evolutionary dynamics experiments examining gene flow (Slatkin, 1987), population symbiosis (Kaneko & Ikegami, 1992), sources and sinks (Dias, 1996), genetic drift (Lande, 1976; Gillespie, 2000), and the spread of gene drive systems (Esvelt et al, 2014; Noble et al, 2017) (Fig 1D). We accordingly used Pyhamilton to enable the flexible transfer of organisms between populations in a 96-well plate, using pre-programmed migration rates to simulate geographic barriers (Fig 1E). A human would have great difficulty performing or programming hundreds of variable pipetting actions in many directions, in any reasonable time frame, without errors. With Pyhamilton, simple abstractions and data structures make this task straightforward. Instead of exhaustively specifying each pipetting step, we specified liquid transfer patterns as matrices and allowed Python to compile the requisite steps. We demonstrate liquid transfer to nearby plates and between adjacent wells to model “flow” or “diffusion” across the miniaturized landscape of a 96-well plate. We then simulate genetic flow by visualizing the point spread of a drop of dye near the center of a plate (Fig 1F and G, Table EV2). The amount of liquid exchanged and the number of wells is arbitrary, defined as a sparse matrix where the rows are source wells, the columns are destination wells, and the values are the fraction of liquid transferred (Appendix Fig S2). Each iteration, the robot performs several hundred bi-directional liquid transfers to apply the matrix operations (Movie EV6). Succinct code (Fig 1G) can generate both symmetric and asymmetric diffusion patterns, which could be combined with a phenotypic reporter to experimentally simulate arbitrarily directionally bounded or unbounded migration (Fig 1D) with many model organisms such as E. coli, yeast, or even nematodes. Enabling feedback control to maintain culture conditions Though most liquid-handling robots are used to execute a list of precompiled instructions (e.g., assembling reagents for many PCRs), many potential applications require making real-time modifications in response to changing data. For example, a turbidostat is a culture of cells that is maintained at a constant density by making real-time adjustments to the flow rate of media based on turbidity sensing. In practice, this is accomplished with process controls which measure the optical density (OD) of a culture in situ (Horinouchi et al, 2014; Haby et al, 2019). However, turbidity probes are both costly and not amenable to very high-throughput experiments (Takahashi et al, 2017; Wong et al, 2018; Hemmerich et al, 2018). Thus, we sought to leverage the flexibility of Pyhamilton to multiplex the maintenance of many bacterial turbidostats by adjusting the volume of liquid transfers in response to real-time density measurements obtained using an integrated plate reader (Fig 1H–J). The method equilibrates each culture, growing in a multiwell microplate, to a setpoint (Fig 1I) in response to these measurements by applying a transfer function to calculate the growth rate (k-value) and adjustment volume for each individual well over time (Fig 1J). Asynchrony enables high-throughput turbidostats To maximize the number of turbidostats that can be maintained, we next developed a more complex method which uses asynchronous programming to execute multiple robotic steps simultaneously— in this case plate reading and pipetting (Appendix Fig S4). This allows for up to 480 cultures to be maintained with real-time fluorescent reporter monitoring on a single small robot, nearly 20× more than can be readily achieved with multiplexed mini-bioreactor setups (Hans et al, 2018; Haby et al, 2019). In this method, bacterial cultures are inoculated into 96-well clear-bottom plates and their ODs and fluorescence levels are measured with an integrated plate reader (Fig 2A, Movie EV7). To minimize waste, consumables, and prevent media contamination, we also implemented a cleaning process (Fig 2A): after each media transfer, each tip is sterilized with 1% bleach, rinsed in water, and returned to its housing unit (Fig 2A, Table EV2). To further minimize the possibility of cross-contamination between wells, each culture is assigned its own tip and media reservoir by housing replenishing media within high-volume 96-well plates. We confirmed that this method introduces no measurable cross-contamination by inoculating 96 turbidostats with four different bacterial cultures expressing RFP, YFP, CFP, or no fluorescent protein in a grid-like pattern with no-bacteria controls (Fig 2C). We then monitored the absorbance and fluorescence levels in real time and maintained the cultures at OD 0.8 for 24 h. We observed no cross-contamination and no growth in the no-bacteria controls during this time (Fig 2C). We also inoculated the same bacterial strains at 6 different starting densities (OD = 0.0–0.8) and demonstrated that irrespective of initial conditions, the feedback control algorithm equilibrates each culture to its set point within 12 h (Fig 2D). Finally, we confirmed that the method could support culture maintenance of bacteria with varying growth rates (Appendix Fig S5A–C), with no measurable back-contamination of media (Appendix Fig S5D), for up to 2 days without experimenter intervention (Appendix Figs S5E and F, and S6). Figure 2. High-throughput turbidostats High-throughput turbidostat summary for up to 480 simultaneous turbidostats. Bacterial populations are housed in 96-well clear-bottom plates on the deck of a liquid-handling robot. Liquid handling is used to create a turbidostat in every well, continuously refreshing each population by diluting the bacterial culture from a respective deep-well media reservoir on deck. An integrated plate reader is used to monitor absorbance, luminescence, or fluorescence readouts for each culture. Movements by robotic pipette (blue arrow) and plate reader (red arrow) are shown. Dotted lines indicate tasks that are executed asynchronously, and require 10 min per plate. Step-by-step summary of high-throughput turbidostat method, executed asynchronously. Plate layout of real-time absorbance, CFP, RFP, and YFP fluorescence readings of 96 simultaneous cultures inoculated with either no bacteria, FP-null bacteria, and CFP, RFP, or YFP-expressing bacteria. Data shown from 24 representative wells. Real-time absorbance measurements of 96 E. coli BL21 cultures inoculated at ODs of 0, 0.1, 0.2 0.4, 0.6, 0.8, which equilibrate to a set point of 0.8 within 12 h, consistent with simulation (Appendix Fig S3). Download figure Download PowerPoint High-throughput perturbation analysis of metabolites We next sought to use high-throughput turbidostat tracking to address an outstanding question in metabolic engineering by systematically mapping the chemical landscape that supports bacterial growth and protein expression. To do this, we surveyed the contributions of carbon, nitrogen, and phosphorus on growth and recombinant protein production by permuting chemical gradients for these metabolites in high-throughput using our multiplexed turbidostat maintenance protocol. These dependencies, while seemingly well-studied, have not been explored in depth. Truly comprehensive mapping requires sufficient conditions, replicates, and controls, long-term maintenance of log-phase growth, and real-time monitoring, each of which is trivial to implement with Pyhamilton. It has traditionally been thought that cells regulate protein production by allocating their resources to optimize for both expression and growth (Li et al, 2014; Mori et al, 2017). However, it has recently been shown that in either carbon-, nitrogen- or phosphorus-limiting conditions, cells are able to fine-tune their ribosomal usage to maintain equal levels of protein (Li et al, 2018). Thus, we wondered whether exploration of the entire metabolite landscape (Fig 3A) could more rigorously identify bacterial growth conditions optimized for recombinant protein production. To do this, we inoculated cultures with E. coli BL21, a strain commonly used for recombinant protein production in metabolic engineering or biomanufacturing, engineered for high constitutive expression of a fluorescent protein (CFP) (Sarabipour et al, 2014). Figure 3. Metabolic profiling of protein production Schematic flow of carbon, nitrogen and phosphorus nutrients in protein and nucleotide production. Real-time absorbance and fluorescent reporter monitoring for BL21 E. coli expressing CFP in 100 various M9 media compositions (n = 3 per condition). Real-time calculations of volumes/h and estimates for k-value convergence shown. (left) Average growth rate for each media composition plotted as a 2-dimensional fitness landscape of carbon and nitrogen, for four concentrations of phosphorus. (right) Summary of all 100 conditions shown as 3D fitness landscape colored by growth rate (blue = low, red = high). Size of dot indicates absolute deviation from average 1X M9 media composition. (left) Average amount of protein expression (measured by fluorescence) of each media composition plotted as a 2-dimensional fitness landscape of carbon and nitrogen, for four concentrations of phosphorus (right). 3D protein production landscape of all 100 conditions colored by amount of fluorescence (blue = low, red = high). Size of dot indicates absolute deviation from average 1× M9 media composition. Download figure Download PowerPoint In a single experiment spanning 36 h with no user intervention, we simultaneously quantified the equilibrium log-phase growth rates and respective fluorescence levels of 300 individual turbidostats, representing 100 different media compositions in triplicate (Fig 3B). Cells were grown in modified M9 media containing 100 different ratios of carbon, nitrogen, and phosphorus and the cultures were maintained in log-phase growth for 36 h with feedback control (Supplemental methods). All cultures grew within +/− 20% of the standard M9 media growth rate, with the exception of cultures that were starved of both carbon and phosphorus (Fig 3C). We observed that increases in growth rate are primarily correlated with increases in phosphorus (independent of nitrogen or carbon levels), which is likely a result of increased DNA synthesis. Further, in phosphorus-limiting conditions, we find that the depressed growth rate can be rescued by supplementing carbon, but not nitrogen, suggesting that carbon precursors are a more limiting reagent than amino acids in metabolism (Fig 3C). Consistent with previously published results (Li et al, 2018), we observe that the total amount of protein is generally not affected by limiting carbon or nitrogen, nor by supplementing the cells with excess of either nutrient. However, we additionally find that when phosphorus is limited (0.25X), excess carbon supplementation not only rescues the growth rate of the culture (Fig 3C, Dataset EV2), but also results in an increase in total fluorescence (Fig 3D, Dataset EV2). Since we observe negligible growth defects, this finding suggests that on a per-cell basis, supplementing carbon in phosphorus-limiting conditions (such as in the soil (Ostertag, 2008; Vitousek et al, 2010) or P-limited lakes (Hessen, 1992)) can shunt bacterial metabolism from DNA/mRNA synthesis to protein translation without sacrificing growth. Collectively, these findings demonstrate that Pyhamilton enables researchers to answer rigorous metabolic engineering questions by enabling facile, low-consumable, yet rich hypothesis-generating experiments. Discussion Liquid-handling robots have traditionally automated workflows that were explicitly designed for human researchers rather than enabling new high-throughput experimental modalities. Pyhamilton is an open-source Python framework intended for experiments that could never be done by hand, such as protocols that must pipette continuously for multiple days, perform complex calculations about future steps based on real-time data, or make use of hardware that is more sophisticated than any hand-held multichannel pipette. We showcase these improved capabilities by simultaneously quantifying the metabolic fitness landscape of 100 different bacterial growth conditions to identify ideal conditions for recombinant protein production. Though recent fluidic advances have enabled the maintenance of many continuous cultures (Gupta et al, 2017; Wong et al, 2018; Haby et al, 2019), our liquid-handling platform can accommodate several times as many. Moreover, liquid-handling systems can easily incorporate a plate reader for real-time reporter monitoring, which vastly expands the types of questions that can be approached with facile, multiplex solutions. For example, one could maintain cultures of, and accurately quantify any reporter output for massively-parallel experiments including genetic knockout or CRISPR collections (Baba et al, 2006; Peters et al, 2016), mutagenesis variants (Miyazaki & Takenouchi, 2002), or even small-molecule compound libraries (Geysen et al, 2003). With high accuracy, any suspension culture of mixed populations could be maintained in log-phase growth for days in order to study transient invaders into microbial communities (Amor et al, 2020) or even microbiome system dynamics (Lloyd-Price et al, 2017). The advent of small-molecule fluorescent reporters for metabolic fitness (Zhao & Yang, 2015), pH (Zhang et al, 2016; Si et al, 2016), and CO2 (Zhujun & Seitz, 1984), in addition to the hundreds of fluorescent protein sensors available to the synthetic biology community at large (Palmer et al, 2011; Hu et al, 2018), underscore the many potential applications of being able to multiplex and quantify changes in growth, gene expression, and the environment in real-time. Presently, Pyhamilton is only extensible to Hamilton robots. However, since it uses a platform-independent, web-based protocol (HTTP) and common readable data format (JSON) to bridge Python and the Hamilton Scripting Language (HSL) (Appendix Fig S1), Pyhamilton could be ported to other biological automation systems that provide an API, such as Tecan or alternative platforms. As such, Pyhamilton is a small part of an ongoing transition to a paradigm which leverages insights from computer science (Bär et al, 2012) and applies them to biology. Similar to how Bioconductor (Gentleman et al, 2004) and The Biopython project (Cock et al, 2009) have revolutionized computational biology, bioinformatics, and genomics, our hope is that by making this software open-source and freely available, a community of scientists and developers could begin to similarly transform bioautomation. The experiments we have described represent only a small sampling of many possible Pyhamilton applications. Collectively, they highlight the potential of high-throughput robotic systems to transcend the repetitive processes for which they were conceived and directly address broad questions in microbiology, genetics, and evolution that are beyond the physical capabilities of human researchers. Materials and Methods Reagents and Tools table Reagent/Resource Reference or source Identifier or catalog number Experimental models BL21(DE3) New England Biolabs Cat #C2527I S2060 Addgene Cat #105064 Recombinant DNA pRSET-B YFP Addgene Cat #108856 pRSET-B mCherry Addgene Cat #108857 pRSET-B CFP Addgene Cat #108858 Chemicals, enzymes and other reagents Carbenicillin Gold Biotechnology Cat #C-103-5 Chloramphenicol Gold Biotechnology Cat #C-105-5 Software Pyhamilton https://github.com/dgretton/pyhamilton Hamilton Run Control Software Other Hamilton STARlet Hamilton Company Cat #173020 1,000 μl Pipetting Channels, 8 channels Hamilton Company Cat #173081 CO-RE 96 channel Multi Probe Head Hamilton Company Cat #199090 iSWAP Plate Handler Hamilton Company Cat #190220 HEPA Flow Hood, UV Hamilton Company Cat #55502-01 CLARIOstar Multi-Mode Microplate Reader BMG LABTECH Cat #0430-101 Methods and Protocols Robotic equipment set-up and interfacing A Hamilton Microlab STARlet 8-channel base model was augmented with a Hamilton CO-RE 96 Probe Head and a Hamilton iSWAP Robotic Transport Arm. Air filtration was provided by an overhead HEPA filter fan module integrated into the robot enclosure. A BMG CLARIOstar luminescence multimode microplate reader was positioned inside the enclosure, within reach of the transport arm. Software. A general-purpose driver method was created using MicroLab STAR VENUS ONE software and compiled to Hamilton Scripting Language (HSL) format. Instantiation of this method and management of its local network connection was handled in Python. A new Pyhamilton-compatible supporting Python package provided an overlying control layer interface to the CLARIOstar plate reader. We used Git to develop and version control the packages and the specific Python methods used for each experiment; our software implementation can be found on github at: https://github.com/dgretton/pyhamilton. Bacterial assays For bacterial assay validation, bacterial plaque assays were used to confirm dilutions and agar solidification. Briefly, overnight cultures of S2060 cells (Addgene bacterial strain #105064) were grown in 2XYT media (Digest Peptone 16 g/l, Yeast extract: 10 g/l, Sodium Chloride: 5 g/l; Research Products International #X15600) supplemented with maintenance antibiotics were diluted 1,000-fold into fresh media with maintenance antibiotics and grown at 37°C with shaking at 230 rpm to OD600 ~0.6–0.8 before use. M13 bacteriophage were serially diluted 100-fold (4 di

Referência(s)