Artigo Revisado por pares

Parasites, Pathogens, and Polyandry in Honey Bees

1998; University of Chicago Press; Volume: 151; Issue: 4 Linguagem: Inglês

10.2307/2463425

ISSN

1537-5323

Autores

Sherman, Seeley, Reeve,

Tópico(s)

Plant and animal studies

Resumo

Previous article No AccessParasites, Pathogens, and Polyandry in Honey BeesPaul W. Sherman, Thomas D. Seeley, and Hudson K. ReevePaul W. ShermanSection of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 Search for more articles by this author , Thomas D. SeeleySection of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 Search for more articles by this author , and Hudson K. ReeveSection of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 Search for more articles by this author Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 151, Number 4April 1998 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/286127 Views: 127Total views on this site Citations: 35Citations are reported from Crossref HistoryReceived August 5, 1997Accepted November 7, 1997 Keywordsdisease resistancemultiple matinghoney beespolyandry© 1998 by The University of Chicago.PDF download Crossref reports the following articles citing this article:Lelania Bilodeau, David Tarpy Genetic Diversity and Structure in a Closed Breeding System of Russian Honey Bees, Journal of Economic Entomology 115, no.22 (Jan 2022): 682–687.https://doi.org/10.1093/jee/toab266D. M. Soper, A. K. E. Ekroth, M. J. F. Martins Direct evidence for increased disease resistance in polyandrous broods exists only in eusocial Hymenoptera, BMC Ecology and Evolution 21, no.11 (Oct 2021).https://doi.org/10.1186/s12862-021-01925-3Hanna M Bensch, Emily A O'Connor, Charlie Kinahan Cornwallis Living with relatives offsets the harm caused by pathogens in natural populations, eLife 10 (Jul 2021).https://doi.org/10.7554/eLife.66649Robin W. Radcliffe, Thomas D. Seeley Looking to Nature to Solve the Health Crisis of Honey Bees, (Jan 2021): 1–20.https://doi.org/10.1002/9781119583417.ch1Amanda Kyle Gibson, Anna E. Nguyen Does genetic diversity protect host populations from parasites? A meta‐analysis across natural and agricultural systems, Evolution Letters 5, no.11 (Nov 2020): 16–32.https://doi.org/10.1002/evl3.206Tatsuya Saga, Masaki Okuno, Kevin J Loope, Koji Tsuchida, Kako Ohbayashi, Masakazu Shimada, Yasukazu Okada, Marie Herberstein Polyandry and paternity affect disease resistance in eusocial wasps, Behavioral Ecology 31, no.55 (Jul 2020): 1172–1179.https://doi.org/10.1093/beheco/araa062Thomas L. Gillard, Benjamin P. Oldroyd Controlled reproduction in the honey bee (Apis mellifera) via artificial insemination, (Jan 2020): 1–42.https://doi.org/10.1016/bs.aiip.2020.08.001Alexis Beaurepaire, Christina Sann, Daniela Arredondo, Fanny Mondet, Yves Le Conte , Insects 10, no.99 ( 2019): 299.https://doi.org/10.3390/insects10090299Lelania Bourgeois, Lorraine Beaman Tracking the Genetic Stability of a Honey Bee (Hymenoptera: Apidae) Breeding Program With Genetic Markers, Journal of Economic Entomology 110, no.44 (Jul 2017): 1419–1423.https://doi.org/10.1093/jee/tox175Juliana Rangel, Kristen Baum, William L. Rubink, Robert N. Coulson, J. Spencer Johnston, Brenna E. Traver Prevalence of Nosema species in a feral honey bee population: a 20-year survey, Apidologie 47, no.44 (Nov 2015): 561–571.https://doi.org/10.1007/s13592-015-0401-yMichael Simone-Finstrom, Megan Walz, David R. Tarpy Genetic diversity confers colony-level benefits due to individual immunity, Biology Letters 12, no.33 (Mar 2016): 20151007.https://doi.org/10.1098/rsbl.2015.1007Shao-Ying Meng, Xi-Hao Chen, Shuang-Ning Ning, Jia-Mei Wen, Li-Bin Fu Instability, adiabaticity and controlling effects of external fields for the dark state in a heteronuclear atom–tetramer conversion system, Journal of Physics B: Atomic, Molecular and Optical Physics 47, no.1818 (Sep 2014): 185303.https://doi.org/10.1088/0953-4075/47/18/185303Stephan Wolf, Dino P. McMahon, Ka S. Lim, Christopher D. Pull, Suzanne J. Clark, Robert J. Paxton, Juliet L. Osborne, Nigel E. Raine So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees, PLoS ONE 9, no.88 (Aug 2014): e103989.https://doi.org/10.1371/journal.pone.0103989G. M. Lee, P. A. McGee, B. P. Oldroyd Variable virulence among isolates of Ascosphaera apis: testing the parasite–pathogen hypothesis for the evolution of polyandry in social insects, Naturwissenschaften 100, no.33 (Jan 2013): 229–234.https://doi.org/10.1007/s00114-013-1016-7Janusz Bratkowski, Christian W W Pirk, Peter Neumann, Jerzy Wilde Genotypic diversity in queenless honey bee colonies reduces fitness, Journal of Apicultural Research 51, no.44 (Apr 2015): 336–341.https://doi.org/10.3896/IBRA.1.51.4.07Bruce J. Eckholm, Kirk E. Anderson, Milagra Weiss, Gloria DeGrandi-Hoffman Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency, Behavioral Ecology and Sociobiology 65, no.55 (Nov 2010): 1037–1044.https://doi.org/10.1007/s00265-010-1108-8Penny A. Spiering, Michael J. Somers, Jesús E. Maldonado, David E. Wildt, Micaela Szykman Gunther Reproductive sharing and proximate factors mediating cooperative breeding in the African wild dog (Lycaon pictus), Behavioral Ecology and Sociobiology 64, no.44 (Nov 2009): 583–592.https://doi.org/10.1007/s00265-009-0875-6C. Invernizzi, F. Peñagaricano, I. H. Tomasco Intracolonial genetic variability in honeybee larval resistance to the chalkbrood and American foulbrood parasites, Insectes Sociaux 56, no.33 (May 2009): 233–240.https://doi.org/10.1007/s00040-009-0016-2F-J Richard, A Aubert, CM Grozinger Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers, BMC Biology 6, no.11 (Nov 2008).https://doi.org/10.1186/1741-7007-6-50A. Aubert, F.-J. Richard Social management of LPS-induced inflammation in Formica polyctena ants, Brain, Behavior, and Immunity 22, no.66 (Aug 2008): 833–837.https://doi.org/10.1016/j.bbi.2008.01.010DIANE C. WIERNASZ, JESSICA HINES, DARA G. PARKER, BLAINE J. COLE Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis, Molecular Ecology 17, no.44 (Feb 2008): 1137–1144.https://doi.org/10.1111/j.1365-294X.2007.03646.xBenjamin P. Oldroyd, Jennifer H. Fewell Genetic diversity promotes homeostasis in insect colonies, Trends in Ecology & Evolution 22, no.88 (Aug 2007): 408–413.https://doi.org/10.1016/j.tree.2007.06.001Daniel V Calleri, Ellen McGrail Reid, Rebeca B Rosengaus, Edward L Vargo, James F.A Traniello Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis, Proceedings of the Royal Society B: Biological Sciences 273, no.16011601 (Jul 2006): 2633–2640.https://doi.org/10.1098/rspb.2006.3622Herv� Rosset, Laurent Keller, Michel Chapuisat Experimental manipulation of colony genetic diversity had no effect on short-term task efficiency in the Argentine ant Linepithema humile, Behavioral Ecology and Sociobiology 58, no.11 (Jan 2005): 87–98.https://doi.org/10.1007/s00265-004-0890-6Rebecca N Johnson, M Tauheed Zaman, Meredith M Decelle, Adam J Siegel, David R Tarpy, Eli C Siegel, Philip T Starks Multiple micro-organisms in chalkbrood mummies: evidence and implications, Journal of Apicultural Research 44, no.11 (Mar 2015): 29–32.https://doi.org/10.1080/00218839.2005.11101143DANIEL J. C. KRONAUER, CASPAR SCHÖNING, JES S. PEDERSEN, JACOBUS J. BOOMSMA, JÜRGEN GADAU Extreme queen-mating frequency and colony fission in African army ants, Molecular Ecology 13, no.88 (Jul 2004): 2381–2388.https://doi.org/10.1111/j.1365-294X.2004.02262.xDiane C. Wiernasz, Christina L. Perroni, Blaine J. Cole Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis, Molecular Ecology 13, no.66 (Mar 2004): 1601–1606.https://doi.org/10.1111/j.1365-294X.2004.02153.xDavid R. Tarpy Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth, Proceedings of the Royal Society of London. Series B: Biological Sciences 270, no.15101510 (Jan 2003): 99–103.https://doi.org/10.1098/rspb.2002.2199Else J. Fjerdingstad, Pia J. Gertsch, Laurent Keller WHY DO SOME SOCIAL INSECT QUEENS MATE WITH SEVERAL MALES? TESTING THE SEX-RATIO MANIPULATION HYPOTHESIS IN LASIUS NIGER, Evolution 56, no.33 (Jan 2002): 553.https://doi.org/10.1554/0014-3820(2002)056[0553:WDSSIQ]2.0.CO;2Annette Sauter, Mark J. F. Brown, Boris Baer, Paul Schmid-Hempel Males of social insects can prevent queens from multiple mating, Proceedings of the Royal Society of London. Series B: Biological Sciences 268, no.14751475 (Jul 2001): 1449–1454.https://doi.org/10.1098/rspb.2001.1680 David R. Tarpy and Robert E. Page, Jr. No Behavioral Control over Mating Frequency in Queen Honey Bees (Apis mellifera L.): Implications for the Evolution of Extreme Polyandry. D. R. Tarpy and R. E. Page, Jr., The American Naturalist 155, no.66 (Jul 2015): 820–827.https://doi.org/10.1086/303358Paul Schmid-Hempel Mating, parasites and other trials of life in social insects, Microbes and Infection 2, no.55 (Apr 2000): 515–520.https://doi.org/10.1016/S1286-4579(00)00316-6NICOLE DUVOISIN, BORIS BAER, PAUL SCHMID-HEMPEL Sperm transfer and male competition in a bumblebee, Animal Behaviour 58, no.44 (Oct 1999): 743–749.https://doi.org/10.1006/anbe.1999.1196Paul Schmid-Hempel, Ross H. Crozier Ployandry versus polygyny versus parasites, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354, no.13821382 (Feb 1999): 507–515.https://doi.org/10.1098/rstb.1999.0401Robin F. A. Moritz, Robert E. Page Behavioral threshold variability: costs and benefits in insect societies, (Jan 1999): 203–215.https://doi.org/10.1007/978-3-0348-8739-7_11

Referência(s)
Altmetric
PlumX