Artigo Revisado por pares

Deep-Space Navigation with Intersatellite Radio Tracking

2021; American Institute of Aeronautics and Astronautics; Volume: 44; Issue: 5 Linguagem: Inglês

10.2514/1.g005610

ISSN

1533-3884

Autores

Antonio Genova, Flavio Petricca,

Tópico(s)

Planetary Science and Exploration

Resumo

No AccessEngineering NotesDeep-Space Navigation with Intersatellite Radio TrackingAntonio Genova and Flavio PetriccaAntonio Genova https://orcid.org/0000-0001-5584-492XSapienza University of Rome, 00184 Rome, Italy*Assistant Professor, Department of Mechanical and Aerospace Engineering, Via Eudossiana 18.Search for more papers by this author and Flavio Petricca https://orcid.org/0000-0002-6574-0507Sapienza University of Rome, 00184 Rome, Italy†Graduate Student, Department of Mechanical and Aerospace Engineering, Via Eudossiana 18.Search for more papers by this authorPublished Online:25 Mar 2021https://doi.org/10.2514/1.G005610SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Melbourne W. and Curkendall D., “Radio Metric Direction Finding: A New Approach to Deep Space Navigation,” Astrodynamics Conference, AIAA Paper 1977-3188, 1977. https://doi.org/10.2514/6.1978-3188 Google Scholar[2] Thornton C. L. and Border J. S., Radiometric Tracking Techniques for Deep-Space Navigation, JPL Deep Space Communications and Navigation Series, Vol. 1, Wiley, Hoboken, NJ, 2003, pp. 3–7. Google Scholar[3] Imbriale W. A., Large Antennas of the Deep Space Network, JPL Deep Space Communications and Navigation Series, Vol. 4, Wiley, Hoboken, NJ, 2002, pp. 3–6. Google Scholar[4] Bertelsmeier M., Buscemi G. and Mamedov F., “A Novel Approach for Ground Stations Communications Within the ESTRACK Network of ESA,” DASIA 2005-Data Systems in Aerospace, Vol. 602, European Space Agency, Edinburgh, 2005. Google Scholar[5] Asmar S., Armstrong J., Iess L. and Tortora P., “Spacecraft Doppler Tracking: Noise Budget and Accuracy Achievable in Precision Radio Science Observations,” Radio Science, Vol. 40, No. 2, 2005, pp. 1–9. https://doi.org/10.1029/2004RS003101 CrossrefGoogle Scholar[6] Buccino D. R., Seubert J. A., Asmar S. W. and Park R. S., “Optical Ranging Measurement with a Lunar Orbiter: Limitations and Potential,” Journal of Spacecraft and Rockets, Vol. 53, No. 3, 2016, pp. 457–463. https://doi.org/10.2514/1.A33415 LinkGoogle Scholar[7] Martin-Mur T., McCandless S. E. and Karimi R., “Deep-Space Navigation Using Optical Communications Systems,” 26th International Symposium on Space Flight Dynamics & 31st ISTS, Jet Propulsion Lab., National Aeronautics and Space Administration, Pasadena, CA, 2017. Google Scholar[8] Degnan J. J., “Laser Transponders for High-Accuracy Interplanetary Laser Ranging and Time Transfer,” Lasers, Clocks and Drag-Free Control, 1st ed., Springer, Berlin, 2008, pp. 231–242. Google Scholar[9] Kim J. and Tapley B. D., “Error Analysis of a Low-Low Satellite-to-Satellite Tracking Mission,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002, pp. 1100–1106. https://doi.org/10.2514/2.4989 LinkGoogle Scholar[10] Klipstein W. M., Arnold B. W., Enzer D. G., Ruiz A. A., Tien J. Y., Wang R. T. and Dunn C. E., “The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission,” Space Science Reviews, Vol. 178, No. 1, 2013, pp. 57–76. https://doi.org/10.1007/s11214-013-9973-x Google Scholar[11] Sheard B., Heinzel G., Danzmann K., Shaddock D., Klipstein W. and Folkner W., “Intersatellite Laser Ranging Instrument for the GRACE Follow-On Mission,” Journal of Geodesy, Vol. 86, No. 12, 2012, pp. 1083–1095. https://doi.org/10.1007/s00190-012-0566-3 CrossrefGoogle Scholar[12] Savoldi M. and Choukroun D., “Optimized Laser Ranging for Satellite Relative Navigation Under Atmosphere Density Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 12, 2019, pp. 2700–2711. https://doi.org/10.2514/1.G004508 Google Scholar[13] Kang Z., Nagel P. and Pastor R., “Precise Orbit Determination for GRACE,” Advances in Space Research, Vol. 31, No. 8, 2003, pp. 1875–1881. https://doi.org/10.1016/S0273-1177(03)00159-5 Google Scholar[14] Asmar S. W., Konopliv A. S., Watkins M. M., Williams J. G., Park R. S., Kruizinga G., Paik M., Yuan D. N., Fahnestock E., Strekalov D., Harvey N., Lu W., Kahan D., Oudrhiri K., Smith D. E. and Zuber M. T., “The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission,” GRAIL: Mapping the Moon’s Interior, Springer, New York, 2013, pp. 25–55. https://doi.org/10.1007/978-1-4614-9584-0 Google Scholar[15] Tapley B., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pekker T., Poole S. and Wang F., “GGM02—An Improved Earth Gravity Field Model from GRACE,” Journal of Geodesy, Vol. 79, No. 8, 2005, pp. 467–478. https://doi.org/10.1007/s00190-005-0480-z CrossrefGoogle Scholar[16] Zuber M. T., Smith D. E., Watkins M. M., Asmar S. W., Konopliv A. S., Lemoine F. G., Melosh H. J., Neumann G. A., Phillips R. J., Solomon S. C., Wieczorek M., Williams J. G., Goossens S. J., Kruizinga G., Mazarico E., Park R. S. and Yuan D. N., “Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission,” Science, Vol. 339, No. 6120, 2013, pp. 668–671. https://doi.org/10.1126/science.1231507 CrossrefGoogle Scholar[17] Kornfeld R. P., Arnold B. W., Gross M. A., Dahya N. T., Klipstein W. M., Gath P. F. and Bettadpur S., “GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission,” Journal of Spacecraft and Rockets, Vol. 56, No. 3, 2019, pp. 931–951. https://doi.org/10.2514/1.A34326 LinkGoogle Scholar[18] Abich K., Abramovici A., Amparan B., Baatzsch A., Okihiro B. B., Barr D. C., Bize M. P., Bogan C., Braxmaier C. and Burke M. J., “In-Orbit Performance of the GRACE Follow-On Laser Ranging Interferometer,” Physical Review Letters, Vol. 123, No. 3, 2019, Paper 031101. https://doi.org/10.1103/PhysRevLett.123.031101 CrossrefGoogle Scholar[19] Smith R. S. and Hadaegh F. Y., “Control of Deep-Space Formation-Flying Spacecraft; Relative Sensing and Switched Information,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 106–114. https://doi.org/10.2514/1.6165 LinkGoogle Scholar[20] Hill K. and Born G. H., “Autonomous Interplanetary Orbit Determination Using Satellite-to-Satellite Tracking,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 3, 2007, pp. 679–686. https://doi.org/10.2514/1.24574 LinkGoogle Scholar[21] Leonard J. M., Parker J. S., Anderson R. L., McGranaghan R. M., Fujimoto K. and Born G. H., “Navigating a Crewed Lunar Vehicle Using LiAISON,” 23rd AAS/AIAA Spaceflight Mechanics Meeting, NASA, 2013, pp. 1–19, http://hdl.handle.net/2014/44040. Google Scholar[22] Leonard J., Jones B., Villalba E. and Born G. H., “Absolute Orbit Determination and Gravity Field Recovery for 433 Eros Using Satellite-to-Satellite Tracking,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2012-4877, 2012. https://doi.org/10.2514/6.2012-4877 LinkGoogle Scholar[23] Di Benedetto M., Imperi L., Durante D., Dougherty M., Iess L., Notaro V. and Racioppa P., “Augmenting NASA Europa Clipper by a Small Probe: Europa Tomography Probe (ETP) Mission Concept,” Acta Astronautica, Vol. 165, Dec. 2019, pp. 211–218. https://doi.org/10.1016/j.actaastro.2019.07.027 Google Scholar[24] Genova A., “ORACLE: A Mission Concept to Study Mars’ Climate, Surface and Interior,” Acta Astronautica, Vol. 166, Jan. 2020, pp. 317–329. https://doi.org/10.1016/j.actaastro.2019.10.006 CrossrefGoogle Scholar[25] James N., Abello R., Lanucara M., Mercolino M. and Maddè R., “Implementation of an ESA Delta-DOR Capability,” Acta Astronautica Vol. 64, Nos. 11–12, 2009, pp. 1041–1049. https://doi.org/10.1016/j.actaastro.2009.01.005 CrossrefGoogle Scholar[26] Curkendall D. W. and Border J. S., “Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network—History, Architecture, and Componentry,” Interplanetary Network Progress Report, Vol. 42, May 2013, p. 193. Google Scholar[27] Iess L., Di Benedetto M., James N., Mercolino M., Simone L. and Tortora P., “Astra: Interdisciplinary Study on Enhancement of the End-to-End Accuracy for Spacecraft Tracking Techniques,” Acta Astronautica, Vol. 94, No. 2, 2014, pp. 699–707. https://doi.org/10.1016/j.actaastro.2013.06.011 CrossrefGoogle Scholar[28] Bolton S., Lunine J., Stevenson D., Connerney J., Levin S., Owen T., Bagenal F., Gautier D., Ingersoll A., Orton G., Hubbard W., Bloxham J., Coradini A., Stephens S. K., Mokashi P., Thorne R. and Thorpe R., “The Juno Mission,” Space Science Reviews, Vol. 213, No. 1, 2017, pp. 5–37. https://doi.org/10.1007/s11214-017-0429-6 CrossrefGoogle Scholar[29] Benkhoff J., Van Casteren J., Hayakawa H., Fujimoto M., Laakso H., Novara M., Ferri P., Middleton H. R. and Ziethe R., “BepiColombo—Comprehensive Exploration of Mercury: Mission Overview and Science Goals,” Planetary and Space Science, Vol. 58, Nos. 1–2, 2010, pp. 2–20. https://doi.org/10.1016/j.pss.2009.09.020 CrossrefGoogle Scholar[30] Grasset O., Dougherty M., Coustenis A., Bunce E., Erd C., Titov D., Blanc M., Coates A., Drossart P., Fletcher L., Hussmanni H., Jaumanni R., Kruppj N., Lebretonk J. P., Prieto-Ballesterosl O., Tortora P., Tosin F. and Van Hoolst T., “JUpiter ICy Moons Explorer (JUICE): An ESA Mission to Orbit Ganymede and to Characterise the Jupiter System,” Planetary and Space Science, Vol. 78, April 2013, pp. 1–21. https://doi.org/10.1016/j.pss.2012.12.002 CrossrefGoogle Scholar[31] Ciarcia S., Simone L., Gelfusa D., Colucci P., De Angelis G., Argentieri F., Iess L. and Formaro R., “MORE and Juno Ka-Band Transponder Design, Performance, Qualification and In-Flight Validation,” 6th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, ESOC, European Space Agency, Darmstadt, Germany, 2013. Google Scholar[32] De Tiberis F., Simone L., Gelfusa D., Simone P., Viola R., Santoni A., Cocciolillo O., Ziarelli M., Barletta F., Salerno N., Maffei M. and Nanni V., “The X/X/KA-Band Deep Space Transponder for the BepiColombo Mission to Mercury,” Acta Astronautica, Vol. 68, Nos. 5–6, 2011, pp. 591–598. https://doi.org/10.1016/j.actaastro.2010.01.023 Google Scholar[33] Kim J. and Tapley B. D., “Simulation of Dual One-Way Ranging Measurements,” Journal of Spacecraft and Rockets, Vol. 40, No. 3, 2003, pp. 419–425. https://doi.org/10.2514/2.3962 LinkGoogle Scholar[34] Kang Z., Tapley B. D., Bettadpur S., Ries J., Nagel P. and Pastor R., “Precise Orbit Determination for the GRACE Mission Using Only GPS Data,” Journal of Geodesy, Vol. 80, No. 6, 2006, pp. 322–331. https://doi.org/10.1007/s00190-006-0073-5 CrossrefGoogle Scholar[35] Wolfe J. D., Speyer J. L., Hwang S., Lee Y. J. and Lee E., “Estimation of Relative Satellite Position Using Transformed Differential Carrier-Phase GPS Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1217–1227. https://doi.org/10.2514/1.11691 LinkGoogle Scholar[36] Psiaki M. L. and Mohiuddin S., “Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 6, 2007, pp. 1628–1639. https://doi.org/10.2514/1.29534 LinkGoogle Scholar[37] Lemoine F. G., Goossens S., Sabaka T. J., Nicholas J. B., Mazarico E., Rowlands D. D., Loomis B. D., Chinn D. S., Caprette D. S., Neumann G. A., Smith D. E. and Zuber M. T., “High-Degree Gravity Models from GRAIL Primary Mission Data,” Journal of Geophysical Research: Planets, Vol. 118, No. 8, 2013, pp. 1676–1698. https://doi.org/10.1002/jgre.20118 CrossrefGoogle Scholar[38] Roncoli R. B. and Fujii K. K., “Mission Design Overview for the Gravity Recovery and Interior Laboratory (GRAIL) Mission,” Astrodynamics Specialist Conference, AIAA/AAS, Toronto, Aug. 2010, pp. 1–22. Google Scholar[39] Arena M., Giove P. V., Di Giuliomaria D., Gizzi A., Ciarcia S., Simone L., Cocciolillo O., Campagna M. G. and Gelfusa D., “Next Generation Transponders for Interplanetary Mission: Integrated Radio Science and Deep Space TTC Transponder,” Proceedings of ESA TT&C Workshop, ESTEC, European Space Agency, Noordwijk, Netherlands, 2016. Google Scholar[40] “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities,” IEEE Std Std 1139-2008, IEEE, New York, Feb. 2009, pp. c1–35. https://doi.org/10.1109/IEEESTD.2008.4797525 Google Scholar[41] Srinivasan D. K., Perry M. E., Fielhauer K. B., Smith D. E. and Zuber M. T., “The Radio Frequency Subsystem and Radio Science on the MESSENGER Mission,” Space Science Reviews, Vol. 131, Nos. 1–4, 2007, pp. 557–571. https://doi.org/10.1007/s11214-007-9270-7 Google Scholar[42] Srinivasan D. K., Sheldon C. and Bray M., “Telecommunications Systems for the NASA Europa Missions,” 2017 IEEE MTT-S International Microwave Symposium (IMS), Inst. of Electrical and Electronics Engineers, New York, 2017, pp. 394–397. Google Scholar[43] Tapley B. D., Schutz B. and Born G. H., Statistical Orbit Determination, Elsevier, San Diego, CA, 2004, Chap. 4. https://doi.org/10.1016/B978-0-12-683630-1.X5019-X CrossrefGoogle Scholar[44] Graf J. E., Zurek R. W., Eisen H. J., Jai B., Johnston M. and DePaula R., “The Mars Reconnaissance Orbiter Mission,” Acta Astronautica, Vol. 57, Nos. 2–8, 2005, pp. 566–578. https://doi.org/10.1016/j.actaastro.2005.03.043 CrossrefGoogle Scholar[45] de Oliveira M. R., Gil P. J. and Ghail R., “A Novel Orbiter Mission Concept for Venus with the EnVision Proposal,” Acta Astronautica, Vol. 148, July 2018, pp. 260–267. https://doi.org/10.1016/j.actaastro.2018.05.012 CrossrefGoogle Scholar[46] Schulz R. and Benkhoff J., “BepiColombo: Payload and Mission Updates,” Advances in Space Research, Vol. 38, No. 4, 2006, pp. 572–577. https://doi.org/10.1016/j.asr.2005.05.084 CrossrefGoogle Scholar[47] Archinal B., Acton C., A’Hearn M., Conrad A., Consolmagno G., Duxbury T., Hestroffer D., Hilton J., Kirk R., Klioner S., McCarthy D., Meech K., Oberst J., Ping J., Seidelmann P. K., Tholen D. J., Thomas P. C. and Williams I. P., “Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015,” Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 3, 2018, pp. 1–46. https://doi.org/10.1007/s10569-017-9805-5 Google Scholar[48] Zuber M. T., Lemoine F. G., Smith D. E., Konopliv A. S., Smrekar S. E. and Asmar S. W., “Mars Reconnaissance Orbiter Radio Science Gravity Investigation,” Journal of Geophysical Research: Planets, Vol. 112, No. E5, 2007, pp. 1–12. https://doi.org/10.1029/2006JE002833 Google Scholar[49] Dumoulin C., Rosenblatt P., Tellmann S., Genova A., Marty J. C., Pätzold M., Oschlisniok J., Kaspi Y., Galanti E., Withers P. and Fienga A., “EnVision Radio Science Experiment,” European Planetary Science Congress, Paper EPSC2020-755, Granada, Spain, Sept. 2020. Google Scholar[50] Iess L., Asmar S. W. and Tortora P., “MORE: An Advanced Tracking Experiment for the Exploration of Mercury with the Mission BepiColombo,” Acta Astronautica, Vol. 65, Nos. 5–6, 2009, pp. 666–675. https://doi.org/10.1016/j.actaastro.2009.01.049 CrossrefGoogle Scholar[51] Genova A., Goossens S., Lemoine F. G., Mazarico E., Neumann G. A., Smith D. E. and Zuber M. T., “Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science,” Icarus, Vol. 272, July 2016, pp. 228–245. https://doi.org/10.1016/j.icarus.2016.02.050 CrossrefGoogle Scholar[52] Konopliv A. S., Banerdt W. and Sjogren W., “Venus Gravity: 180th Degree and Order Model,” Icarus, Vol. 139, No. 1, 1999, pp. 3–18. https://doi.org/10.1006/icar.1999.6086 CrossrefGoogle Scholar[53] Genova A., Goossens S., Mazarico E., Lemoine F. G., Neumann G. A., Kuang W., Sabaka T. J., Hauck S. A., Smith D. E., Solomon S. C. and Zuber M. T., “Geodetic Evidence that Mercury has a Solid Inner Core,” Geophysical Research Letters, Vol. 46, No. 7, 2019, pp. 3625–3633. https://doi.org/10.1029/2018GL081135 CrossrefGoogle Scholar[54] Justus C. G. and Johnson D., Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide, 2001. Google Scholar[55] Justh H., Justus C. and Keller V., “Global Reference Atmospheric Models, Including Thermospheres for Mars, Venus and Earth,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2006-6394, 2006. https://doi.org/10.2514/6.2006-6394 LinkGoogle Scholar[56] Zurek R. W. and Smrekar S. E., “An Overview of the Mars Reconnaissance Orbiter (MRO) Science Mission,” Journal of Geophysical Research: Planets Vol. 112, No. E5, 2007, pp. 1–22. https://doi.org/10.1029/2006JE002701 Google Scholar[57] Ghail R., Wilson C., Widemann T., Bruzzone L., Dumoulin C., Helbert J., Herrick R., Marcq E., Mason P. and Rosenblatt P., “EnVision: Understanding Why Our Most Earth-Like Neighbour Is So Different,” arXiv preprint arXiv:1703.09010, 2017. Google Scholar[58] Vaughan R. M., Haley D. R., O’Shaughnessy D. J. and Shapiro H. S., “Momentum Management for the MESSENGER Mission,” Advances in the Astronautical Sciences, Vol. 109, 2002, pp. 1139–1158. Google Scholar[59] Nie T., Gurfil P. and Zhang S., “Lunar Satellite Formation Keeping Using Differential Solar Radiation Pressure,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 4, 2019, pp. 1–13. https://doi.org/10.2514/1.G004475 Google Scholar[60] Iafolla V. and Nozzoli S., “Italian Spring Accelerometer (ISA) a High Sensitive Accelerometer for “BepiColombo” ESA CORNERSTONE,” Planetary and Space Science, Vol. 49, Nos. 14–15, 2001, pp. 1609–1617. https://doi.org/10.1016/S0032-0633(01)00097-6 Google Scholar[61] Konopliv A. S., Park R. S., Yuan D. N., Asmar S. W., Watkins M. M., Williams J. G., Fahnestock E., Kruizinga G., Paik M., Strekalov D., Harvey N., Smith D. E. and Zuber M. T., “The JPL Lunar Gravity Field to Spherical Harmonic Degree 660 from the GRAIL Primary Mission,” Journal of Geophysical Research: Planets, Vol. 118, No. 7, 2001, pp. 1415–1434. https://doi.org/10.1002/jgre.20097 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited bySequential Processing of Inter-Satellite Doppler Tracking for a Dual-Spacecraft Configuration27 October 2022 | Remote Sensing, Vol. 14, No. 21Performance analysis and validation of precision multisatellite RF measurement scheme for microsatellite formations1 December 2021 | Measurement Science and Technology, Vol. 33, No. 2 What's Popular Volume 44, Number 5May 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAir NavigationControl TheoryGlobal Navigation Satellite SystemGlobal Positioning SystemGuidance, Navigation, and Control SystemsKalman FilterSatellite GuidanceSatellite Navigation SystemsSpace Flight Tracking and Data NetworkSpacecraft GuidanceSpacecraft Guidance and Control KeywordsSpacecraft TrajectoriesGround StationSpacecraft ConfigurationsTerrestrial PlanetsGravity Recovery and Climate ExperimentPhase Locked LoopPrecise Orbit DeterminationS BandAccelerometerNumerical SimulationAcknowledgmentsThis work has been funded by the Italian Ministry of Education, University and Research (MIUR). Antonio Genova is grateful to L. Iess (Sapienza University of Rome) for his ideas on the intersatellite system and helpful discussions.PDF Received16 August 2020Accepted25 January 2021Published online25 March 2021

Referência(s)