Video analysis for the detection of animals using convolutional neural networks and consumer-grade drones
2021; Canadian Science Publishing; Volume: 9; Issue: 2 Linguagem: Inglês
10.1139/juvs-2020-0018
ISSN2291-3467
AutoresCarl Chalmers, Paul Fergus, Casimiro Curbelo Montañez, S. N. Longmore, Serge A. Wich,
Tópico(s)Smart Agriculture and AI
ResumoDetermining animal distribution and density is important in conservation. The process is both time-consuming and labour-intensive. Drones have been used to help mitigate human-intensive tasks by covering large geographical areas over a much shorter timescale. In this paper we investigate this idea further using a proof of concept to detect rhinos and cars from drone footage. The proof of concept utilises off-the-shelf technology and consumer-grade drone hardware. The study demonstrates the feasibility of using machine learning (ML) to automate routine conservation tasks, such as animal detection and tracking. The prototype has been developed using a DJI Mavic Pro 2 and tested over a global system for mobile communications (GSM) network. The Faster-RCNN Resnet 101 architecture is used for transfer learning. Inference is performed with a frame sampling technique to address the required trade-off between precision, processing speed, and live video feed synchronisation. Inference models are hosted on a web platform and video streams from the drone (using OcuSync) are transmitted to a real-time messaging protocol (RTMP) server for subsequent classification. During training, the best model achieves a mean average precision (mAP) of 0.83 intersection over union (@IOU) 0.50 and 0.69 @IOU 0.75, respectively. On testing the system in Knowsley Safari our prototype was able to achieve the following: sensitivity (Sen), 0.91 (0.869, 0.94); specificity (Spec), 0.78 (0.74, 0.82); and an accuracy (ACC), 0.84 (0.81, 0.87) when detecting rhinos, and Sen, 1.00 (1.00, 1.00); Spec, 1.00 (1.00, 1.00); and an ACC, 1.00 (1.00, 1.00) when detecting cars.
Referência(s)