Artigo Acesso aberto Revisado por pares

Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

2021; IOP Publishing; Volume: 6; Issue: 4 Linguagem: Inglês

10.1088/2058-9565/abf719

ISSN

2058-9565

Autores

Mahiro Abe, P. Adamson, Marcel Borcean, Daniela Bortoletto, Kieran Bridges, Samuel P. Carman, Swapan Chattopadhyay, J. P. Coleman, Noah Curfman, Kenneth DeRose, Tejas Deshpande, Savas Dimopoulos, C. J. Foot, J. Frisch, Benjamin E. Garber, S. Geer, V. Gibson, Jonah Glick, Peter W. Graham, S. R. Hahn, Roni Harnik, Leonie Hawkins, S. Hindley, Jason M. Hogan, Yijun Jiang, Mark A. Kasevich, R. Kellett, M. Kiburg, Tim Kovachy, Joseph D. Lykken, John March-Russell, Jeremiah Mitchell, Martin J. Murphy, Megan Nantel, Lucy Nobrega, R. Plunkett, Surjeet Rajendran, Jan Rudolph, Natasha Sachdeva, M. Safdari, J. Santucci, Ariel Gustavo Schwartzman, Ian Shipsey, Hunter Swan, L. Valerio, Arvydas Vasonis, Yiping Wang, Thomas Wilkason,

Tópico(s)

Atomic and Subatomic Physics Research

Resumo

MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world's best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.

Referência(s)