Artigo Acesso aberto Revisado por pares

YAP Accelerates Notch-Driven Cholangiocarcinogenesis via mTORC1 in Mice

2021; Elsevier BV; Volume: 191; Issue: 9 Linguagem: Inglês

10.1016/j.ajpath.2021.05.017

ISSN

1525-2191

Autores

Xinjun Lu, Baogang Peng, Ge Chen, Giovanni Mario Pes, Silvia Ribback, Cindy Ament, Hongwei Xu, Rajesh Pal, Pedro M. Rodrigues, Jesús M. Bañales, Matthias Evert, Diego F. Calvisi, Xin Chen, Biao Fan, Jingxiao Wang,

Tópico(s)

Cancer-related gene regulation

Resumo

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignant neoplasm with limited therapeutic options. Previous studies have found that Notch1 overexpression alone suffices to induce iCCA in the mouse, albeit after long latency. The current study found that activation of the Yes-associated protein (Yap) proto-oncogene occurs during Notch1-driven iCCA progression. After co-expressing activated Notch1 intracellular domain (Nicd) and Yap (YapS127A) in the mouse liver, rapid iCCA formation and progression occurred in Nicd/Yap mice. Mechanistically, an increased expression of amino acid transporters and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway was detected in Nicd/Yap mouse liver tumors. Significantly, the genetic deletion of Raptor, the major mTORC1 component, completely suppressed iCCA development in Nicd/Yap mice. Elevated expression of Notch1, YAP, amino acid transporters, and members of the mTORC1 pathway was also detected ubiquitously in a collection of human iCCA specimens. Their levels were associated with a poor patient outcome. This study demonstrates that Notch and YAP concomitant activation is frequent in human cholangiocarcinogenesis. Notch and YAP synergize to promote iCCA formation by activating the mTORC1 pathway. Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignant neoplasm with limited therapeutic options. Previous studies have found that Notch1 overexpression alone suffices to induce iCCA in the mouse, albeit after long latency. The current study found that activation of the Yes-associated protein (Yap) proto-oncogene occurs during Notch1-driven iCCA progression. After co-expressing activated Notch1 intracellular domain (Nicd) and Yap (YapS127A) in the mouse liver, rapid iCCA formation and progression occurred in Nicd/Yap mice. Mechanistically, an increased expression of amino acid transporters and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway was detected in Nicd/Yap mouse liver tumors. Significantly, the genetic deletion of Raptor, the major mTORC1 component, completely suppressed iCCA development in Nicd/Yap mice. Elevated expression of Notch1, YAP, amino acid transporters, and members of the mTORC1 pathway was also detected ubiquitously in a collection of human iCCA specimens. Their levels were associated with a poor patient outcome. This study demonstrates that Notch and YAP concomitant activation is frequent in human cholangiocarcinogenesis. Notch and YAP synergize to promote iCCA formation by activating the mTORC1 pathway. Intrahepatic cholangiocarcinoma (iCCA) is a deadly tumor and the second most common primary liver cancer type.1Razumilava N. Gores G.J. Cholangiocarcinoma.Lancet. 2014; 383: 2168-2179Abstract Full Text Full Text PDF PubMed Scopus (954) Google Scholar,2Rizvi S. Khan S.A. Hallemeier C.L. Kelley R.K. Gores G.J. Cholangiocarcinoma - evolving concepts and therapeutic strategies.Nat Rev Clin Oncol. 2018; 15: 95-111Crossref PubMed Scopus (520) Google Scholar Most cases of iCCA are diagnosed at advanced stages of the disease, when limited therapeutic options are available. The prognosis of patients with iCCA is dismal because of the late diagnosis, high tumor recurrence rate, and resistance to chemotherapy.1Razumilava N. Gores G.J. Cholangiocarcinoma.Lancet. 2014; 383: 2168-2179Abstract Full Text Full Text PDF PubMed Scopus (954) Google Scholar Unlike the progress achieved in hepatocellular carcinoma treatment3Kudo M. Finn R.S. Qin S. Han K.H. Ikeda K. Piscaglia F. Baron A. Park J.W. Han G. Jassem J. Blanc J.F. Vogel A. Komov D. Evans T.R.J. Lopez C. Dutcus C. Guo M. Saito K. Kraljevic S. Tamai T. Ren M. Cheng A.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.Lancet. 2018; 391: 1163-1173Abstract Full Text Full Text PDF PubMed Scopus (1726) Google Scholar,4Finn R.S. Qin S. Ikeda M. Galle P.R. Ducreux M. Kim T.Y. Kudo M. Breder V. Merle P. Kaseb A.O. Li D. Verret W. Xu D.Z. Hernandez S. Liu J. Huang C. Mulla S. Wang Y. Lim H.Y. Zhu A.X. Cheng A.L. IMbrave150 Investigators Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.N Engl J Med. 2020; 382: 1894-1905Crossref PubMed Scopus (1169) Google Scholar in the last decade, a combination of gemcitabine and platin-based drugs remains the first-line treatment for advanced iCCA not eligible for locoregional therapies or surgical resection. However, with median and 5-year overall survival remaining relatively poor at approximately 28 months (range, 9 to 53 months) and 30% (range, 5% to 56%), respectively, the benefit of this combinatorial treatment is almost negligible.5Valle J. Wasan H. Palmer D.H. Cunningham D. Anthoney A. Maraveyas A. Madhusudan S. Iveson T. Hughes S. Pereira S.P. Roughton M. Bridgewater J. ABC-02 Trial Investigators Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer.N Engl J Med. 2010; 362: 1273-1281Crossref PubMed Scopus (2282) Google Scholar,6Mavros M.N. Economopoulos K.P. Alexiou V.G. Pawlik T.M. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis.JAMA Surg. 2014; 149: 565-574Crossref PubMed Scopus (344) Google Scholar Therefore, the development of more effective therapeutic strategies against this lethal tumor is imperative.1Razumilava N. Gores G.J. Cholangiocarcinoma.Lancet. 2014; 383: 2168-2179Abstract Full Text Full Text PDF PubMed Scopus (954) Google Scholar,2Rizvi S. Khan S.A. Hallemeier C.L. Kelley R.K. Gores G.J. Cholangiocarcinoma - evolving concepts and therapeutic strategies.Nat Rev Clin Oncol. 2018; 15: 95-111Crossref PubMed Scopus (520) Google Scholar Recently, pemigatinib, a soluble inhibitor of fibroblast growth factor receptor (FGFR) 1, FGFR2, and FGFR3, received accelerated approval by the US Food and Drug Administration for the treatment of adults with previously treated, unresectable, locally advanced, or metastatic iCCA harboring FGFR2 fusions or other rearrangements.7Hoy S.M. Pemigatinib: first approval.Drugs. 2020; 80: 923-929Crossref PubMed Scopus (56) Google Scholar The approval of pemigatinib and the encouraging benefits of this drug for patients with iCCA indicate that successful therapeutic approaches against advanced iCCA can be achieved. Thus, considerable efforts need to be directed toward the identification of relevant molecular targets in this disease.8Abou-Alfa G.K. Sahai V. Hollebecque A. Vaccaro G. Melisi D. Al-Rajabi R. Paulson A.S. Borad M.J. Gallinson D. Murphy A.G. Oh D.Y. Dotan E. Catenacci D.V. Van Cutsem E. Ji T. Lihou C.F. Zhen H. Feliz L. Vogel A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study.Lancet Oncol. 2020; 21: 671-684Abstract Full Text Full Text PDF PubMed Scopus (323) Google Scholar Recent high-throughput genomic and transcriptomic studies have uncovered the genetic and epigenetic landscape of iCCA,9Farshidfar F. Zheng S. Gingras M.C. Newton Y. Shih J. Robertson A.G. et al.Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles.Cell Rep. 2017; 18: 2780-2794Abstract Full Text Full Text PDF PubMed Scopus (218) Google Scholar, 10Lowery M.A. Ptashkin R. Jordan E. Berger M.F. Zehir A. Capanu M. Kemeny N.E. O'Reilly E.M. El-Dika I. Jarnagin W.R. Harding J.J. D'Angelica M.I. Cercek A. Hechtman J.F. Solit D.B. Schultz N. Hyman D.M. Klimstra D.S. Saltz L.B. Abou-Alfa G.K. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention.Clin Cancer Res. 2018; 24: 4154-4161Crossref PubMed Scopus (152) Google Scholar, 11Goeppert B. Konermann C. Schmidt C.R. Bogatyrova O. Geiselhart L. Ernst C. Gu L. Becker N. Zucknick M. Mehrabi A. Hafezi M. Klauschen F. Stenzinger A. Warth A. Breuhahn K. Renner M. Weichert W. Schirmacher P. Plass C. Weichenhan D. Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway.Hepatology. 2014; 59: 544-554Crossref PubMed Scopus (81) Google Scholar, 12Yang Y. Deng X. Li Q. Wang F. Miao L. Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: advances and challenges.Cancer Commun (Lond). 2020; 40: 655-680Crossref PubMed Scopus (5) Google Scholar, 13Zhang C. Zhang B. Meng D. Ge C. Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma.Cancer Cell Int. 2019; 19: 352Crossref PubMed Scopus (11) Google Scholar providing novel insights into the pathways that lead to cholangiocarcinogenesis. In particular, the Notch and Hippo cascades have been identified as two key signaling pathways driving iCCA development and progression. The Notch family consists of four distinct receptors (Notch1 through 4) and two types of ligands (Jagged1/2 and DLL1/3/4).14Bray S.J. Notch signalling in context.Nat Rev Mol Cell Biol. 2016; 17: 722-735Crossref PubMed Scopus (456) Google Scholar,15Kovall R.A. Gebelein B. Sprinzak D. Kopan R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force.Dev Cell. 2017; 41: 228-241Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar When the Notch signaling is activated, the Notch intracellular domain (NICD) is cleaved and released to the nucleus to initiate the expression of its downstream target genes.15Kovall R.A. Gebelein B. Sprinzak D. Kopan R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force.Dev Cell. 2017; 41: 228-241Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar,16Xie G. Karaca G. Swiderska-Syn M. Michelotti G.A. Kruger L. Chen Y. Premont R.T. Choi S.S. Diehl A.M. Crosstalk between Notch and Hedgehog regulates hepatic stellate cell fate in mice.Hepatology. 2013; 58: 1801-1813Crossref PubMed Scopus (94) Google Scholar The Notch pathway plays a vital role in cholangiocyte differentiation, bile duct development,17Razumilava N. Gores G.J. Notch-driven carcinogenesis: the merging of hepatocellular cancer and cholangiocarcinoma into a common molecular liver cancer subtype.J Hepatol. 2013; 58: 1244-1245Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar,18Jors S. Jeliazkova P. Ringelhan M. Thalhammer J. Durl S. Ferrer J. Sander M. Heikenwalder M. Schmid R.M. Siveke J.T. Geisler F. Lineage fate of ductular reactions in liver injury and carcinogenesis.J Clin Invest. 2015; 125: 2445-2457Crossref PubMed Scopus (98) Google Scholar and cholangiocarcinogenesis.19Cigliano A. Wang J. Chen X. Calvisi D.F. Role of the Notch signaling in cholangiocarcinoma.Expert Opin Ther Targets. 2017; 21: 471-483Crossref PubMed Scopus (21) Google Scholar,20Rauff B. Malik A. Bhatti Y.A. Chudhary S.A. Qadri I. Rafiq S. Notch signalling pathway in development of cholangiocarcinoma.World J Gastrointest Oncol. 2020; 12: 957-974Crossref PubMed Scopus (7) Google Scholar The overexpression of Notch receptors and ligands, such as Jagged1, has been reported in human iCCA.19Cigliano A. Wang J. Chen X. Calvisi D.F. Role of the Notch signaling in cholangiocarcinoma.Expert Opin Ther Targets. 2017; 21: 471-483Crossref PubMed Scopus (21) Google Scholar,20Rauff B. Malik A. Bhatti Y.A. Chudhary S.A. Qadri I. Rafiq S. Notch signalling pathway in development of cholangiocarcinoma.World J Gastrointest Oncol. 2020; 12: 957-974Crossref PubMed Scopus (7) Google Scholar Moreover, using genomic data from a vast iCCA collection, a recent study identified a Notch1 signature in human iCCA, suggesting the use of γ-secretase inhibitors to treat this subgroup of patients.21O'Rourke C.J. Matter M.S. Nepal C. Caetano-Oliveira R. Ton P.T. Factor V.M. Andersen J.B. Identification of a pan-gamma-secretase inhibitor response signature for notch-driven cholangiocarcinoma.Hepatology. 2020; 71: 196-213Crossref PubMed Scopus (13) Google Scholar The oncogenic role of the Notch pathway in iCCA has been investigated and validated in animal models.19Cigliano A. Wang J. Chen X. Calvisi D.F. Role of the Notch signaling in cholangiocarcinoma.Expert Opin Ther Targets. 2017; 21: 471-483Crossref PubMed Scopus (21) Google Scholar,20Rauff B. Malik A. Bhatti Y.A. Chudhary S.A. Qadri I. Rafiq S. Notch signalling pathway in development of cholangiocarcinoma.World J Gastrointest Oncol. 2020; 12: 957-974Crossref PubMed Scopus (7) Google Scholar Indeed, this study found that overexpression of Nicd1 alone suffices to induce iCCA over long latency, and it synergizes with activated AKT signaling to drive rapid iCCA formation in mice.22Fan B. Malato Y. Calvisi D.F. Naqvi S. Razumilava N. Ribback S. Gores G.J. Dombrowski F. Evert M. Chen X. Willenbring H. Cholangiocarcinomas can originate from hepatocytes in mice.J Clin Invest. 2012; 122: 2911-2915Crossref PubMed Scopus (291) Google Scholar,23Li L. Che L. Tharp K.M. Park H.M. Pilo M.G. Cao D. Cigliano A. Latte G. Xu Z. Ribback S. Dombrowski F. Evert M. Gores G.J. Stahl A. Calvisi D.F. Chen X. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans.Hepatology. 2016; 63: 1900-1913Crossref PubMed Scopus (42) Google Scholar Other groups subsequently reported similar results by overexpressing either Notch1 or the other Notch receptors.24Zender S. Nickeleit I. Wuestefeld T. Sorensen I. Dauch D. Bozko P. El-Khatib M. Geffers R. Bektas H. Manns M.P. Gossler A. Wilkens L. Plentz R. Zender L. Malek N.P. A critical role for notch signaling in the formation of cholangiocellular carcinomas.Cancer Cell. 2016; 30: 353-356Abstract Full Text Full Text PDF PubMed Scopus (9) Google Scholar, 25Guest R.V. Boulter L. Dwyer B.J. Kendall T.J. Man T.Y. Minnis-Lyons S.E. Lu W.Y. Robson A.J. Gonzalez S.F. Raven A. Wojtacha D. Morton J.P. Komuta M. Roskams T. Wigmore S.J. Sansom O.J. Forbes S.J. Notch3 drives development and progression of cholangiocarcinoma.Proc Natl Acad Sci U S A. 2016; 113: 12250-12255Crossref PubMed Scopus (47) Google Scholar, 26Wang J. Dong M. Xu Z. Song X. Zhang S. Qiao Y. Che L. Gordan J. Hu K. Liu Y. Calvisi D.F. Chen X. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.Oncogene. 2018; 37: 3229-3242Crossref PubMed Scopus (43) Google Scholar, 27Kitchen P. Lee K.Y. Clark D. Lau N. Lertsuwan J. Sawasdichai A. Satayavivad J. Oltean S. Afford S. Gaston K. Jayaraman P.S. A runaway PRH/HHEX-Notch3-positive feedback loop drives cholangiocarcinoma and determines response to CDK4/6 inhibition.Cancer Res. 2020; 80: 757-770Crossref PubMed Scopus (6) Google Scholar, 28Matsumori T. Kodama Y. Takai A. Shiokawa M. Nishikawa Y. Matsumoto T. Takeda H. Marui S. Okada H. Hirano T. Kuwada T. Sogabe Y. Kakiuchi N. Tomono T. Mima A. Morita T. Ueda T. Tsuda M. Yamauchi Y. Kuriyama K. Sakuma Y. Ota Y. Maruno T. Uza N. Marusawa H. Kageyama R. Chiba T. Seno H. Hes1 is essential in proliferating ductal cell-mediated development of intrahepatic cholangiocarcinoma.Cancer Res. 2020; 80: 5305-5316Crossref PubMed Scopus (2) Google Scholar The Yes-associated protein (YAP) is a major downstream effector of the Hippo pathway. YAP acts as a transcription factor in regulating genes involved in cell proliferation and apoptosis, profoundly influencing organ size, cell renewal, and tumor development.29Hansen C.G. Moroishi T. Guan K.L. YAP and T.A.Z. a nexus for Hippo signaling and beyond.Trends Cell Biol. 2015; 25: 499-513Abstract Full Text Full Text PDF PubMed Scopus (314) Google Scholar, 30Misra J.R. Irvine K.D. The Hippo signaling network and its biological functions.Annu Rev Genet. 2018; 52: 65-87Crossref PubMed Scopus (140) Google Scholar, 31Moya I.M. Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine.Nat Rev Mol Cell Biol. 2019; 20: 211-226Crossref PubMed Scopus (217) Google Scholar Multiple studies have demonstrated the activation of YAP in human iCCA samples.32Li H. Wolfe A. Septer S. Edwards G. Zhong X. Abdulkarim A.B. Ranganathan S. Apte U. Deregulation of Hippo kinase signalling in human hepatic malignancies.Liver Int. 2012; 32: 38-47Crossref PubMed Scopus (97) Google Scholar,33Tao J. Calvisi D.F. Ranganathan S. Cigliano A. Zhou L. Singh S. Jiang L. Fan B. Terracciano L. Armeanu-Ebinger S. Ribback S. Dombrowski F. Evert M. Chen X. Monga S.P.S. Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice.Gastroenterology. 2014; 147: 690-701Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar In particular, YAP levels predicted poor prognosis in patients with iCCA,34Sugimachi K. Nishio M. Aishima S. Kuroda Y. Iguchi T. Komatsu H. Hirata H. Sakimura S. Eguchi H. Bekki Y. Takenaka K. Maehara Y. Suzuki A. Mimori K. Altered expression of Hippo signaling pathway molecules in intrahepatic cholangiocarcinoma.Oncology. 2017; 93: 67-74Crossref PubMed Scopus (14) Google Scholar,35Sugiura K. Mishima T. Takano S. Yoshitomi H. Furukawa K. Takayashiki T. Kuboki S. Takada M. Miyazaki M. Ohtsuka M. The expression of yes-associated protein (YAP) maintains putative cancer stemness and is associated with poor prognosis in intrahepatic cholangiocarcinoma.Am J Pathol. 2019; 189: 1863-1877Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar and YAP silencing in human iCCA cells resulted in growth inhibition.36Marti P. Stein C. Blumer T. Abraham Y. Dill M.T. Pikiolek M. Orsini V. Jurisic G. Megel P. Makowska Z. Agarinis C. Tornillo L. Bouwmeester T. Ruffner H. Bauer A. Parker C.N. Schmelzle T. Terracciano L.M. Heim M.H. Tchorz J.S. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.Hepatology. 2015; 62: 1497-1510Crossref PubMed Scopus (127) Google Scholar,37Zhang S. Song X. Cao D. Xu Z. Fan B. Che L. Hu J. Chen B. Dong M. Pilo M.G. Cigliano A. Evert K. Ribback S. Dombrowski F. Pascale R.M. Cossu A. Vidili G. Porcu A. Simile M.M. Pes G.M. Giannelli G. Gordan J. Wei L. Evert M. Cong W. Calvisi D.F. Chen X. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice.J Hepatol. 2017; 67: 1194-1203Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar Moreover, YAP regulates genes that modulate proliferation, apoptosis, and angiogenesis in iCCA cells.38Werneburg N. Gores G.J. Smoot R.L. The Hippo Pathway and YAP signaling: emerging concepts in regulation, signaling, and experimental targeting strategies with implications for hepatobiliary malignancies.Gene Expr. 2020; 20: 67-74Crossref PubMed Scopus (6) Google Scholar A recent study found that overexpression of an activated form of YAP (YAPS127A) alone in the liver cannot induce histologic alterations in mice. In contrast, co-expression of YAPS127A with activated AKT promotes fast iCCA development in vivo.26Wang J. Dong M. Xu Z. Song X. Zhang S. Qiao Y. Che L. Gordan J. Hu K. Liu Y. Calvisi D.F. Chen X. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.Oncogene. 2018; 37: 3229-3242Crossref PubMed Scopus (43) Google Scholar,37Zhang S. Song X. Cao D. Xu Z. Fan B. Che L. Hu J. Chen B. Dong M. Pilo M.G. Cigliano A. Evert K. Ribback S. Dombrowski F. Pascale R.M. Cossu A. Vidili G. Porcu A. Simile M.M. Pes G.M. Giannelli G. Gordan J. Wei L. Evert M. Cong W. Calvisi D.F. Chen X. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice.J Hepatol. 2017; 67: 1194-1203Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar,39Song X. Liu X. Wang H. Wang J. Qiao Y. Cigliano A. Utpatel K. Ribback S. Pilo M.G. Serra M. Gordan J.D. Che L. Zhang S. Cossu A. Porcu A. Pascale R.M. Dombrowski F. Hu H. Calvisi D.F. Evert M. Chen X. Combined CDK4/6 and Pan-mTOR inhibition is synergistic against intrahepatic cholangiocarcinoma.Clin Cancer Res. 2019; 25: 403-413Crossref PubMed Scopus (38) Google Scholar The mammalian target of rapamycin (mTOR) cascade is a pivotal player in regulating cell growth and metabolism in response to growth factors and nutrients via phosphorylation of its downstream effectors.40Saxton R.A. Sabatini D.M. mTOR Signaling in growth, metabolism, and disease.Cell. 2017; 168: 960-976Abstract Full Text Full Text PDF PubMed Scopus (2453) Google Scholar,41Lu X. Paliogiannis P. Calvisi D.F. Chen X. Role of the mammalian target of rapamycin pathway in liver cancer: from molecular genetics to targeted therapies.Hepatology. 2021; 73 Suppl 1: 49-61Crossref PubMed Scopus (30) Google Scholar Previous studies have demonstrated the critical function of the mTOR pathway in iCCA formation and progression.42Chung J.Y. Hong S.M. Choi B.Y. Cho H. Yu E. Hewitt S.M. The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma.Clin Cancer Res. 2009; 15: 660-667Crossref PubMed Scopus (91) Google Scholar, 43Corti F. Nichetti F. Raimondi A. Niger M. Prinzi N. Torchio M. Tamborini E. Perrone F. Pruneri G. Di Bartolomeo M. de Braud F. Pusceddu S. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: a review of current evidences and future perspectives.Cancer Treat Rev. 2019; 72: 45-55Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar, 44Montal R. Sia D. Montironi C. Leow W.Q. Esteban-Fabro R. Pinyol R. Torres-Martin M. Bassaganyas L. Moeini A. Peix J. Cabellos L. Maeda M. Villacorta-Martin C. Tabrizian P. Rodriguez-Carunchio L. Castellano G. Sempoux C. Minguez B. Pawlik T.M. Labgaa I. Roberts L.R. Sole M. Fiel M.I. Thung S. Fuster J. Roayaie S. Villanueva A. Schwartz M. Llovet J.M. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.J Hepatol. 2020; 73: 315-327Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar An earlier investigation found that mTOR inhibition restrains iCCA cell growth in vitro and possesses antitumor activities in the AKT/YAP iCCA mouse model in vivo.37Zhang S. Song X. Cao D. Xu Z. Fan B. Che L. Hu J. Chen B. Dong M. Pilo M.G. Cigliano A. Evert K. Ribback S. Dombrowski F. Pascale R.M. Cossu A. Vidili G. Porcu A. Simile M.M. Pes G.M. Giannelli G. Gordan J. Wei L. Evert M. Cong W. Calvisi D.F. Chen X. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice.J Hepatol. 2017; 67: 1194-1203Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar Notably, the pan-mTOR inhibitor MLN0128 combined with the CDK4/6 inhibitor palbociclib markedly suppressed AKT/YAP iCCA tumor growth.39Song X. Liu X. Wang H. Wang J. Qiao Y. Cigliano A. Utpatel K. Ribback S. Pilo M.G. Serra M. Gordan J.D. Che L. Zhang S. Cossu A. Porcu A. Pascale R.M. Dombrowski F. Hu H. Calvisi D.F. Evert M. Chen X. Combined CDK4/6 and Pan-mTOR inhibition is synergistic against intrahepatic cholangiocarcinoma.Clin Cancer Res. 2019; 25: 403-413Crossref PubMed Scopus (38) Google Scholar In the current study, the expression and molecular crosstalk between the YAP and Notch pathways using mouse models and human specimens were investigated. Co-expression of activated forms of YAP and Notch1 triggered rapid iCCA formation in a mTOR complex 1 (mTORC1)–dependent manner in mice. In human iCCA specimens, the YAP, Notch1, and mTOR pathways were coordinately activated, especially in the most biologically aggressive tumors. Thus, the Nicd/Yap model might represent a valuable tool for the study of human iCCA. Wild-type FVB/N mice and Raptorfl/fl mice were from the Jackson Laboratory (Sacramento, CA). Mice were housed and monitored following protocols approved by the Committee for Animal Research at the University of California, San Francisco. The plasmids, including pT3EF1α-NICD (MYC tagged), pT3EF1α-YAPS127A, pCMV, pCMV-Cre (Cre), and pCMV–sleeping beauty transposase (SB), have been described previously in detail.26Wang J. Dong M. Xu Z. Song X. Zhang S. Qiao Y. Che L. Gordan J. Hu K. Liu Y. Calvisi D.F. Chen X. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.Oncogene. 2018; 37: 3229-3242Crossref PubMed Scopus (43) Google Scholar,37Zhang S. Song X. Cao D. Xu Z. Fan B. Che L. Hu J. Chen B. Dong M. Pilo M.G. Cigliano A. Evert K. Ribback S. Dombrowski F. Pascale R.M. Cossu A. Vidili G. Porcu A. Simile M.M. Pes G.M. Giannelli G. Gordan J. Wei L. Evert M. Cong W. Calvisi D.F. Chen X. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice.J Hepatol. 2017; 67: 1194-1203Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar,45Chen X. Calvisi D.F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research.Am J Pathol. 2014; 184: 912-923Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar,46Urribarri A.D. Munoz-Garrido P. Perugorria M.J. Erice O. Merino-Azpitarte M. Arbelaiz A. Lozano E. Hijona E. Jimenez-Aguero R. Fernandez-Barrena M.G. Jimeno J.P. Marzioni M. Marin J.J. Masyuk T.V. LaRusso N.F. Prieto J. Bujanda L. Banales J.M. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases.Gut. 2014; 63: 1658-1667Crossref PubMed Scopus (35) Google Scholar Briefly, 20 μg of pT3EF1α-NICD and pT3EF1α-YAPS127A constructs and the SB plasmid at the ratio of 25:1 to all oncogenes were diluted in 2 mL of 0.9% sodium chloride solution and injected into the tail vein of 20-g FVB/N mice in approximately 5 seconds. Concerning Raptor ablation experiments, 20 μg of pT3EF1α-NICD and pT3EF1α-YAPS127A, with 60 μg of pCMV or Cre, and SB plasmids were injected into Raptorfl/fl mice. All plasmids were extracted using the Endotoxin-free Maxi prep kit (Sigma-Aldrich, St. Louis, MO) before injection. Mice were sacrificed at indicated time points or when mice became moribund or developed large abdominal masses. Mouse liver tissues and human cell lines were homogenized in mammalian protein extraction reagent (catalog number 78503; Thermo Fisher Scientific, Waltham, MA) plus protease inhibitor cocktail (catalog number 78440; Thermo Fisher Scientific). Proteins were quantified with the BCA assay (catalog number 23225; Thermo Fisher Scientific). The antibodies used in this study are listed in Table 1.Table 1Antibody ListAntibodySourceCatalog no.SpeciesApplicationDilutionRetrieval bufferp-AKTS473Cell Signaling Technology (Danvers, MA)9271MouseWestern blot1:1000NATotal AKTCell Signaling Technology9272MouseWestern blot1:1000NAmTORCell Signaling Technology2983MouseWestern blot1:1000NAp-4EBP1Cell Signaling Technology9451MouseWestern blot1:1000NA4EBP1Cell Signaling Technology9644MouseWestern blot1:1000NAp-RPS6Cell Signaling Technology4858MouseWestern blot1:1000NARPS6Cell Signaling Technology2217MouseWestern blot1:1000NAp-ERK1/2Cell Signaling Technology9101MouseWestern blot1:1000NATotal ERK1/2Cell Signaling Technology9102MouseWestern blot1:1000NAYAPCell Signaling Technology14074MouseWestern blot1:1000NANotch1Cell Signaling Technology4380MouseWestern blot1:1000NAMYC taggedCell Signaling Technology2278MouseWestern blot1:1000NARICTORCell Signaling Technology2114MouseWestern blot1:500NARAPTORCell Signaling Technology2280MouseWestern blot1:1000NAGAPDHCell Signaling Technology5174MouseWestern blot1:3000NACK19Abcam (Cambridge, UK)ab181604MouseImmunohistochemistry1:800Sodium citrateHNF4αAbcamab181604MouseImmunohistochemistry1:2000Tris-EDTASOX9Abcamab185230MouseImmunohistochemistry1:2000Sodium citrateKi-67Cell Signaling Technology12202MouseImmunohistochemistry1:150Sodium citratep-ERK1/2Cell Signaling Technology4370MouseImmunohistochemistry1:200Sodium citratep-mTOR Ser2448Cell Signaling Technology2976MouseImmunohistochemistry1:150Sodium citrateMYC-taggedCell Signaling Technology2278MouseImmunohistochemistry1:100Sodium citrateCK19Cell Signaling Technology12434HumanImmunohistochemistry1:500Sodium citrateRAPTORAbcamab40768HumanImmunohistochemistry1:200Sodium citratep-4EBP1Cell Signaling Technology2855HumanImmunohistochemistry1:300Sodium citrateNotch1Lifespan Biosciences (Seattle, WA)LS-C114369HumanImmunohistochemistry1:100Sodium citrateYAPCell Signaling Technology14074HumanImmunohistochemistry1:200Sodium citratep-YAPCell Signaling Technology13008HumanImmunohistochemistry1:300Sodium citrateCTGFAtlas Antibodies (Stockholm, Sweden)AMAb91366HumanImmunohistochemistry1:100Sodium citrateCK, cytokeratin; CTGF, connective tissue growth factor; ERK, extracellular signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HNF4α, hepatocyte nuclear factor 4α; mTOR, mammalian target of rapamycin; NA, not applicable; p-, phosphorylated; MYC tagged, pT3EF1α-NICD; YAP, Yes-associated protein. Open table in a new tab CK, cytokeratin; CTGF, connective tissue growth factor; ERK, extracellular signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HNF4α, hepatocyte nuclear factor 4α; mTOR, mammalian target of rapamycin; NA, not applicable; p-, phosphorylated; MYC tagged, pT3EF1α-NICD; YAP, Yes-associated protein. Two experienced pathologists and liver experts (M.E. and S.R.) analyzed hematoxylin and eosin–stained liver sections based on the criteria established by Frith and Ward.47Frith C.H. Ward J.M. A morphologic classification of proliferative and neoplastic hepatic lesions in mice.J Environ Pathol Toxicol. 1979; 3: 329-351PubMed Google Scholar Cholangiomas, alias biliary adenomas, are benign cholangiocellular lesions that compress the surrounding parenchyma but lack cytologic atypia, substantial mitotic/apoptotic activity, necrosis, infiltration/invasion, and fibrosis. When cystic, cholangiomas are referred to as cystic cholangiomas or cystadenomas. Cholangiocellular lesions characterized by cytologic atypia and extensive proliferation are defined as intracystic papillary neoplasms with intraepithelial neoplasia. If these neoplasms result from malignant transformation of benign cystadenomas, they are referred to as cystadenocarcinomas. Cystadenocarcinomas that inva

Referência(s)