
Avaliação do Desempenho dos Métodos ICP, CPD e SVR para Registro Automático de Nuvens de Pontos Relativas a Telhados Extraídas de Dados LiDAR Aerotransportados
2021; UNIVERSIDADE FEDERAL DE UBERLÂNDIA; Volume: 73; Issue: 3 Linguagem: Português
10.14393/rbcv73n3-57838
ISSN1808-0936
AutoresP. Ruiz, Cláudia Maria de Almeida, Marcos Benedito Schimalski, Camilo Daleles Rennó, Edson Aparecido Mitishita, Veraldo Liesenberg,
Tópico(s)3D Surveying and Cultural Heritage
ResumoA partir dos anos 2000, houve um aumento na aquisição de dados LiDAR (Light Detection and Ranging) em áreas urbanas, o que possibilitou diversos estudos e aplicações nas mais variadas áreas, verificando-se um crescimento dos acervos históricos. Com isso, são necessários métodos de processamento robustos para manipulação desses dados. Os métodos de registro de dados laser inserem-se nesse contexto, essenciais para promover a utilização de dados oriundos de distintos equipamentos e datas. Este estudo consiste em avaliar o desempenho de três métodos de registro: Iterative Closest Point (ICP), Coherent Point Drift (CPD) e Support Vector Registration (SVR). A metodologia contempla o pré-processamento dos dados LiDAR para a extração de três telhados de edifícios com características distintas, localizados no campus da UFPR, em Curitiba – PR. Foram utilizados dados do sensor Optech ALTM Pegasus HD 500, com frequência de 300 kHz e altura de voo de 1.600 m, densidade média de 1,71 pontos por m² e IFOV de 25°. Os métodos foram implementados na linguagem Python. Como resultados, foram obtidos os registros, dos quais foram extraídas suas acurácias e tempos de processamento. Os resultados evidenciaram que os métodos CPD e SVR são ótimas alternativas para superar as limitações do ICP, ressaltando-se o desempenho do CPD e a eficiência computacional do SVR, sendo que este último é particularmente adequado para lidar com dados ruidosos.
Referência(s)