Artigo Revisado por pares

TOPIC SESSIONS

2021; Wiley; Volume: 56; Issue: S2 Linguagem: Inglês

10.1002/ppul.25498

ISSN

8755-6863

Tópico(s)

Chronic Obstructive Pulmonary Disease (COPD) Research

Resumo

Pediatric PulmonologyVolume 56, Issue S2 p. S22-S80 OTHER AND ORIGINAL TOPIC SESSIONS First published: 23 June 2021 https://doi.org/10.1002/ppul.25498Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography (1) The Global Asthma Report 2018. Auckland, New Zealand: Global Asthma Network, 2018. (2) Asher IM, Montefort S, Björkstén B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet. 2006; 368(9537): 733-43. (3) Ebmeier S, Thayabaran D, Braithwaite I, Benamara C, Weatherall M, Beasley R. Trends in international asthma mortality: analysis of data from the WHO Mortality Database from 46 countries (1993-2012) . Lancet. 2017; 390(10098): 935-45. (4) Kirenga BJ, de Jong C, Mugenyi L, Katagira W, Muhofa A, Kamya MR, et al. Rates of asthma exacerbations and mortality and associated factors in Uganda: a 2-year prospective cohort study. Thorax. 2018; 73(10): 983-5. (5) Babar ZU, Lessing C, Mace C, Bissell K. The availability, pricing and affordability of three essential asthma medicines in 52 low- and middle-income countries. Pharmacoeconomics. 2013; 31(11): 1063-82. (6) Ait-Khaled N, Auregan G, Bencharif N, Camara LM, Dagli E, Djankine K, et al. Affordability of inhaled corticosteroids as a potential barrier to treatment of asthma in some developing countries. Int J Tuberc Lung Dis. 2000; 4(3): 268-71. (7) Asher I, Haahtela T, Selroos O, Ellwood P, Ellwood E, Global Asthma Network Study G. Global Asthma Network survey suggests more national asthma strategies could reduce burden of asthma. Allergol Immunopathol (Madr). 2017; 45(2): 105-14. (8) Chiang CY, Ait-Khaled N, Bissell K, Enarson DA. Management of asthma in resource-limited settings: role of low-cost corticosteroid/beta-agonist combination inhaler. Int J Tuberc Lung Dis. 2015; 19(2): 129-36. (9) Lasmar L, Fontes MJ, Mohallen MT, Fonseca AC, Camargos P. Wheezy child program: the experience of the belo horizonte pediatric asthma management program. World Allergy Organ J. 2009; 2(12): 289-95. (10) Cruz AA, Souza-Machado A, Franco R, Souza-Machado C, Ponte EV, Moura Santos P, et al. The impact of a program for control of asthma in a low-income setting. World Allergy Organ J. 2010; 3(4): 167-74. (11) Soto-Martinez M, Avila L, Soto N, Chaves A, Celedon JC, Soto-Quiros ME. Trends in hospitalizations and mortality from asthma in Costa Rica over a 12- to 15-year period. J Allergy Clin Immunol Pract. 2014; 2(1): 85-90. References (1) Khoo SK, Read J, Franks K, Zhang G, Bizzintino J, Coleman L, et al. Upper Airway Cell Transcriptomics Identify a Major New Immunological Phenotype with Strong Clinical Correlates in Young Children with Acute Wheezing. J Immunol. 2019; 202(6): 1845-58. (2) Bosco A, Wiehler S, Proud D. Interferon regulatory factor 7 regulates airway epithelial cell responses to human rhinovirus infection. BMC genomics. 2016; 17: 76. (3) Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010; 36(3): 646-54. (4) Perez-Garcia J, Herrera-Luis E, Lorenzo-Diaz F, González M, Sardón O, Villar J, et al. Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response. International journal of molecular sciences. 2020; 21(8). (5) McGeachie MJ, Clemmer GL, Hayete B, Xing H, Runge K, Wu AC, et al. Systems biology and in vitro validation identifies family with sequence similarity 129 member A (FAM129A) as an asthma steroid response modulator. J Allergy Clin Immunol. 2018; 142(5): 1479-88 e12. (6) Read JF, Bosco A. Decoding Susceptibility to Respiratory Viral Infections and Asthma Inception in Children. International journal of molecular sciences. 2020; 21(17). (7) Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, et al. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol. 2020; 179:114046. (8) Cuthbertson L, Oo SWC, Cox MJ, Khoo SK, Cox DW, Chidlow G, et al. Viral respiratory infections and the oropharyngeal bacterial microbiota in acutely wheezing children. PLoS One. 2019; 14(10):e0223990. (9) Bosch A, de Steenhuijsen Piters WAA, van Houten MA, Chu M, Biesbroek G, Kool J, et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am J Respir Crit Care Med. 2017; 196(12): 1582-90. (10) Annamalay A, Le Souëf P. Viral-bacterial interactions in childhood respiratory tract infections. Viral Infections in Children. 1: Springer International Publishing Switzerland; 2017. p. 193-214. References (1) National Institute for Health and Care Excellence. Asthma: diagnosis, monitoring and chronic asthma management. NICE guideline NG80 https://www.nice.org.uk/guidance/ng80/resources/asthma-diagnosis-monitoring-and-chronic-asthma-management-pdf-1837687975621 Accessed January 29, 2019. (2) Murray C, Foden P, Lowe L, Durrington H, Custovic A, Simpson A. Diagnosis of asthma in symptomatic children based on measures of lung function: an analysis of data from a population-based birth cohort study. Lancet Child Adolesc Health. 2017; 1(2): 114-23. (3) Sonntag HJ, Filippi S, Pipis S, Custovic A. Blood Biomarkers of Sensitization and Asthma. Front Pediatr. 2019; 7: 251. (4) Bloom CI, Palmer T, Feary J, Quint JK, Cullinan P. Exacerbation Patterns in Adults with Asthma in England. A Population-based Study. Am J Respir Crit Care Med. 2019; 199(4): 446-53. (5) Deliu M, Fontanella S, Haider S, Sperrin M, Geifman N, Murray C, et al. Longitudinal trajectories of severe wheeze exacerbations from infancy to school age and their association with early-life risk factors and late asthma outcomes. Clin Exp Allergy. 2019. (6) Murray CS, Simpson A, Custovic A. Allergens, viruses, and asthma exacerbations. Proc Am Thorac Soc. 2004; 1(2): 99-104. (7) Belgrave DC, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A. Trajectories of lung function during childhood. Am J Respir Crit Care Med. 2014; 189(9): 1101-9. (8) Oksel C, Granell R, Haider S, Fontanella S, Simpson A, Turner S, et al. Distinguishing Wheezing Phenotypes from Infancy to Adolescence: A Pooled Analysis of Five Birth Cohorts. Ann Am Thorac Soc. 2019. (9) Belgrave DCM, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souef PN, et al. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respir Med. 2018; 6(7): 526-34. (10) Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011; 364(11): 1005-15. (11) Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ, Jr., Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015; 136(6): 1476-85. (12) Custovic A, Belgrave D, Lin L, Bakhsoliani E, Telcian AG, Solari R, et al. Cytokine Responses to Rhinovirus and Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. Am J Respir Crit Care Med. 2018; 197(10): 1265-74. (13) Mahmoud O, Granell R, Tilling K, Minelli C, Garcia-Aymerich J, Holloway JW, et al. Association of Height Growth in Puberty with Lung Function: A Longitudinal Study. Am J Respir Crit Care Med. 2018. References [1] P. Wang, J. A. Lu, Y. Jin, M. Zhu, L. Wang, and S. Chen, “Epidemiological characteristics of 1212 COVID-19 patients in Henan, China,” medRxiv, 2020, doi: 10.1101/2020.02.21.20026112. [2] Q. Bi et al., “Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study,” Lancet Infect. Dis., vol. 20, no. 8, pp. 911–919, Aug. 2020, doi: 10.1016/S1473-3099(2)30287-5. [3] F. Parazzini, R. Bortolus, P. A. Mauri, A. Favilli, S. Gerli, and E. Ferrazzi, “Delivery in pregnant women infected with SARS-CoV-2: A fast review,” Int. J. Gynecol. Obstet., vol. 150, no. 1, pp. 41–46, Jul. 2020, doi: 10.1002/ijgo.13166. [4] I. Liguoro et al., “ SARS-COV-2 infection in children and newborns: a systematic review,” Eur. J. Pediatr., vol. 179, no. 7, pp. 1029–1046, 2020, doi: 10.1007/s00431-020-03684-7. [5] K. Feng et al., “Analysis of CT features of 15 Children with 2019 novel coronavirus infection,” Zhonghua er ke za zhi = Chinese J. Pediatr., vol. 58, no. 0, p. E007, Feb. 2020, doi: 10.3760/cma.j.issn.0578-1310.2020.0007. [6] N. S. Mehta et al., “ SARS-CoV-2 (COVID-19): What Do We Know about Children? A Systematic Review,” Clinical Infectious Diseases, vol. 71, no. 9. Oxford University Press, pp. 2469–2479, Nov. 01, 2020, doi: 10.1093/cid/ciaa556. [7] S. Lega, S. Naviglio, S. Volpi, and A. Tommasini, “Recent insight into SARS-COV2 immunopathology and rationale for potential treatment and preventive strategies in COVID-19 ,” Vaccines, vol. 8, no. 2, pp. 1–30, 2020, doi: 10.3390/vaccines8020224. [8] S. Lega, S. Naviglio, S. Volpi, and A. Tommasini, “Recent insight into SARS-COV2 immunopathology and rationale for potential treatment and preventive strategies in COVID-19 ,” Vaccines, vol. 8, no. 2. MDPI AG, Jun. 01, 2020, doi: 10.3390/vaccines8020224. [9] L. Verdoni et al., “An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study,” Lancet, vol. 395, no. 10239, pp. 1771–1778, Jun. 2020, doi: 10.1016/S0140-6736(20)31103-X. [10] B. J. Webb et al., “Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study,” Lancet Rheumatol., vol. 2, no. 12, pp. e754–e763 , Dec. 2020, doi: 10.1016/S2665-9913(20)30343-X. References (1) Clawson AH, Nwankwo CN, Blair AL, Pepper-Davis M, Ruppe NM, Cole AB. COVID-19 Impacts on Families of Color and Families of Children With Asthma. J Pediatr Psychol 2021. (2) Richardson CH, Orr NJ, Ollosson SL, Irving SJ, Balfour-Lynn IM, Carr SB. Initiating home spirometry for children during the COVID-19 pandemic - A practical guide. Paediatr Respir Rev 2021. (3) Shakkottai A, Kaciroti N, Kasmikha L, Nasr SZ. Impact of home spirometry on medication adherence among adolescents with cystic fibrosis. Pediatr Pulmonol 2018; 53(4): 431-6. (4) Makhecha S, Jamalzadeh A, Irving S, et al. Paediatric severe asthma biologics service: from hospital to home. Arch Dis Child 2021. (5) Tully L, Case L, Arthurs N, Sorensen J, Marcin JP, O'Malley G. Barriers and Facilitators for Implementing Paediatric Telemedicine: Rapid Review of User Perspectives. Front Pediatr 2021; 9: 630365. References (1) Gostin LO. The Great Coronavirus Pandemic of 2020-7 Critical Lessons. JAMA. 2020; 324(18): 1816-7. (2) Perikleous E, Tsalkidis A, Bush A, Paraskakis E. Coronavirus global pandemic: An overview of current findings among pediatric patients. Pediatr Pulmonol. 2020; 55(12): 3252-67. (3) Liu S, Cao Y, Du T, Zhi Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis . J Allergy Clin Immunol Pract. 2021; 9(2): 693-701. (4) Brough HA, Kalayci O, Sediva A, Untersmayr E, Munblit D, Rodriguez Del Rio P, et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics - The 2020 COVID-19 pandemic: A statement from the EAACI-section on pediatrics. Pediatr Allergy Immunol. 2020; 31(5): 442-8. (5) Hatoun J, Correa ET, Donahue SMA, Vernacchio L. Social Distancing for COVID-19 and Diagnoses of Other Infectious Diseases in Children. Pediatrics. 2020; 146(4). (6) Yeoh DK, Foley DA, Minney-Smith CA, Martin AC, Mace AO, Sikazwe CT, et al. The impact of COVID-19 public health measures on detections of influenza and respiratory syncytial virus in children during the 2020 Australian winter. Clin Infect Dis. 2020. (7) Kenyon CC, Hill DA, Henrickson SE, Bryant-Stephens TC, Zorc JJ. Initial effects of the COVID-19 pandemic on pediatric asthma emergency department utilization. J Allergy Clin Immunol Pract. 2020; 8(8): 2774-6 e1. (8) Fan HF, He CH, Yin GQ, Qin Y, Jiang N, Lu G, et al. Frequency of asthma exacerbation in children during the coronavirus disease pandemic with strict mitigative countermeasures. Pediatr Pulmonol. 2021. (9) Cahal M, Amirav I, Diamant N, Be'er M, Besor O, Lavie M. Real-time effects of COVID-19 pandemic lockdown on pediatric respiratory patients. Pediatr Pulmonol. 2021. (10) Fulcher MR, Bolton ML, Millican MD, Michalska-Smith MJ, Dundore-Arias JP, Handelsman J, et al. Broadening Participation in Scientific Conferences during the Era of Social Distancing. Trends Microbiol. 2020; 28(12): 949-52. (11) Ekwebelem OC, Ofielu ES, Nnorom-Dike OV, Iweha C, Ekwebelem NC, Obi BC, et al. Threats of COVID-19 to Achieving United Nations Sustainable Development Goals in Africa. Am J Trop Med Hyg. 2020. References (1) World Health Organization. Novel coronavirus — China. 2020 (https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200208-sitrep-19-ncov.pdf) (2) Lu X, Xing Y, Wong GW. COVID-19: lessons to date from China. Arch Dis Child. 2020 Dec; 105(12): 1146-1150. (3) Lu X, Zhang L, Du H et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020 Apr 23; 382(17): 1663-1665. (4) Xing Y, Wong GW, Ni W, Hu X, Xing Q. Rapid Response to an Outbreak in Qingdao, China. N Engl J Med. 2020 Dec 3; 383(23):e129. References (1) Weekly epidemiological reports National Institute Communicable Diseases South Africa; https://www.nicd.ac.za/diseases-a-z-index/covid-19/surveillance-reports/weekly-epidemiological-brief/ (2) John Hopkins COVID-19 Dashboard [https://coronavirus.jhu.edu/map.html] Last accessed 13 April 2021 (3) Our World in Data https://ourworldindata.org/coronavirus/southafrica. LastLast accessed 13 April 2021 (4) COVID-19 sentinel hospital surveillance update. Johannesburg, South Africa: National Institute for Communicable Diseases, 2021 (5) Epidemiology and clinical characeristics of laboratory confirmed COVID among individuals aged <19 years, 1 Mar 2020 -13 Feb 2021, National Institute for Communicable Diseases, 2021 www.nicd.ac.za (6) Yilmaz O, Gochicoa-Rangel L, Blau H, Epaud R, Lands LC, Lombardi E, Moore PE, Stein RT, Wong GWK, Zar HJ: Brief report: International perspectives on the pediatric COVID-19 experience. Pediatric Pulmonology 2020, 55(7): 1598-1600. (7) Roberton T, Carter ED, Chou VB, Stegmuller AR, Jackson BD, Tam Y, Sawadogo-Lewis T, Walker N: Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study. Lancet Glob Health 2020. (8) Menendez C, Gonzalez R, Donnay F, Leke RGF: Avoiding indirect effects of COVID-19 on maternal and child health. Lancet Glob Health 2020 :S2214-2109X(2220)30239-30234. (9) Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, Chu DK, Akl EA, El-harakeh A, Bognanni A et al: Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis . The Lancet 2020. (10) Zar HJ, Dawa J, Fischer GB, Castro-Rodriguez JA. Challenges of COVID-19 in children in low- and middle-income countries. Paediatr Respir Rev. 2020 Sep;35: 70-74. doi: 10.1016/j.prrv.2020.06.016. PMID: 32654854; PMCID: PMC7316049. References [1] Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2020 [cited 2020 Sep 9]. Available: https://coronavirus.jhu.edu/map.html. Accessed: 9 September 2020. [2] Lobo A de P, Cardoso-dos-Santos AC, Rocha MS, Pinheiro RS, Bremm JM, Macário EM, et al. COVID-19 epidemic in Brazil: Where are we at? Int J Infect Dis. 2020; 97: 382-5. Medline:32561425 doi:10.1016/j.ijid.2020.06.044 [3] Wiese AD, Everson J, Grijalva CG. Social distancing measures: evidence of interruption of seasonal influenza activity and early lessons of the SARS-CoV-2 pandemic. Clin Infect Dis. 2020. Online ahead of print. Medline:32562538 doi:10.1093/cid/ciaa834 [4] Heald-Sargent T, Muller WJ, Zheng X, Rippe J, Patel AB, Kociolek LK. Age-related differences in nasopharyngeal severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate Coronavirus disease 2019 (COVID-19) . JAMA Pediatr 2020; 174(9): 902. [5] Yonker LM, Neilan AM, Bartsch Y, Patel AB, Regan J, Arya P, Gootkind E, Park G, Hardcastle M, John AS, et al. Pediatric Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Clinical Presentation, Infectivity, and Immune Responses. J Pediatr 2020; 227: 45-52.e5. [6] Baggio S, L'Huillier AG, Yerly S, Bellon M, Wagner N, Rohr M, Huttner A, Blanchard-Rohner G, Loevy N, Kaiser L, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Viral Load in the Upper Respiratory Tract of Children and Adults With Early Acute Coronavirus Disease 2019 (COVID-19) . Clin Infect Dis 2020 [accessed 2021 Feb 19];(ciaa1157). https://doi.org/10.1093/cid/ciaa1157 [7] Madera S, Crawford E, Langelier C, Tran NK, Thornborrow E, Miller S, DeRisi JL. Nasopharyngeal SARS-CoV-2 viral loads in young children do not differ significantly from those in older children and adults. Sci Rep 2021; 11(1): 3044. [8] Almeida A, Codeço C, Luz PM. Seasonal dynamics of influenza in Brazil: the latitude effect. BMC Infect Dis. 2018; 18: 695. Medline:30587159 doi:10.1186/s12879-018-3484-z References [1] Makhecha S, Jamalzadeh A, Irving S, Pippa Hall, Sonnappa S, Saglani S, Bush A, Fleming L. Paediatric severe asthma biologic service: from hospital to home. Arch Dis Child 2021 (in press) [2] Perikleous E, Tsalkidis A, Bush A, Paraskakis E. Coronavirus global pandemic: An overview of current findings among pediatric patients. Pediatr Pulmonol. 2020; 55: 3252-3267. [3] Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini P, Rovida F, Baldanti F, Marseglia GL. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020; 174: 882-889. [4] Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, Heidemann SM, Kleinman LC, Sen AI, Hall MW, Priestley MA, McGuire JK, Boukas K, Sharron MP, Burns JP; International COVID-19 PICU Collaborative. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatr. 2020; 174: 868-873. [5] Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P, Ramnarayan P, Fraisse A, Miller O, Davies P, Kucera F, Brierley J, McDougall M, Carter M, Tremoulet A, Shimizu C, Herberg J, Burns JC, Lyall H, Levin M; PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2 . JAMA. 2020; 324: 259-269. [6] Munro APS, Faust SN. Children are not COVID-19 super spreaders: time to go back to school. Arch Dis Child. 2020; 105: 618-619. [7] Danis K, Clin Infect Dis 202 [8] Kenyon CC, Hill DA, Henrickson SE, Bryant-Stephens TC, J Zorc JJ. Initial effects of the COVID-19 pandemic on pediatric asthma emergency department utilization. J Allergy Clin Immunol Pract 2020; 8: 2774-2776 [9] Pollution [10] Lynn RM, Arch Dis Child epub [11]ADC 2020; 105: 810-1 [12] Makrinioti H, Watson M, Bush A, Hargreaves D. COVID-19 and preschool wheeze care: lessons learned. Lancet Respir Med. 2020; 8: 957-959. [13] Gupta A, Bush A, Nagakumar P. Asthma in children during the COVID-19 pandemic: lessons from lockdown and future directions for management. Lancet Respir Med. 2020; 8: 1070-1071. References [1] Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet, 390, 946-958, doi:10.1016/S0140-6736(17)30938-8 (2017). [2] Mazur, N. I. et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect Dis, 18, e295-e311 , doi: 10.1016/S1473-3099(18)30292-30292 (2018). [3] Bacharier, L. B. et al. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol, 130, 91-100 e103, doi:10.1016/j.jaci.2012.02.010 (2012). [4] Blanken, M. O., Rovers, M. M. & Bont, L. Respiratory syncytial virus and recurrent wheeze (reply). N. Engl. J. Med, 369, 782-783, doi:10.1056/NEJMc1307429 [doi] (2013). [5] Scheltema, N. M. et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial. Lancet Respir Med, 6, 257-264, doi:10.1016/S2213-2600(18)30055-30055 (2018). [6] Riddell, C. A. et al. Informing randomized clinical trials of respiratory syncytial virus vaccination during pregnancy to prevent recurrent childhood wheezing: A sample size analysis. Vaccine, 36, 8100-8109, doi:10.1016/j.vaccine.2018.10.041 (2018). [7] Driscoll, A. J. et al. Does respiratory syncytial virus lower respiratory illness in early life cause recurrent wheeze of early childhood and asthma? Critical review of the evidence and guidance for future studies from a World Health Organization-sponsored meeting. Vaccine, 38, 2435-2448, doi:10.1016/j.vaccine.2020.01.020 (2020). References (1) Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. The New England journal of medicine 1995; 332: 133-138. (2) Davies G, Paton JY, Beaton SJ, Young D, Lenney W. Children admitted with acute wheeze/asthma during November 1998-2005: a national UK audit. ArchDisChild 2008; 93: 952-958. (3) Bush A, Grigg J, Saglani S. Managing wheeze in preschool children. BMJ 2014; 348: g15. (4) Brand PL, Baraldi E, Bisgaard H, Boner AL, Castro-Rodriguez JA, Custovic A, de Blic J, de Jongste JC, Eber E, Everard ML, Frey U, Gappa M, Garcia-Marcos L, Grigg J, Lenney W, Le Souef P, McKenzie S, Merkus PJ, Midulla F, Paton JY, Piacentini G, Pohunek P, Rossi GA, Seddon P, Silverman M, Sly PD, Stick S, Valiulis A, van Aalderen WM, Wildhaber JH, Wennergren G, Wilson N, Zivkovic Z, Bush A. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. EurRespir J 2008; 32: 1096-1110. (5) Castro-Rodriguez JA, Rodrigo GJ. Efficacy of inhaled corticosteroids in infants and preschoolers with recurrent wheezing and asthma: a systematic review with meta-analysis . Pediatrics 2009; 123: e519-525 . (6) Fitzpatrick AM. Severe Asthma in Children: Lessons Learned and Future Directions. The journal of allergy and clinical immunology In practice 2016; 4: 11-19. (7) Kaiser SV, Huynh T, Bacharier LB, Rosenthal JL, Bakel LA, Parkin PC, Cabana MD. Preventing Exacerbations in Preschoolers With Recurrent Wheeze: A Meta-analysis . Pediatrics 2016; 137. (8) Fitzpatrick AM, Bacharier LB, Guilbert TW, Jackson DJ, Szefler SJ, Beigelman A, Cabana MD, Covar R, Holguin F, Lemanske RF, Jr., Martinez FD, Morgan W, Phipatanakul W, Pongracic JA, Zeiger RS, Mauger DT, AsthmaNet NN. Phenotypes of Recurrent Wheezing in Preschool Children: Identification by Latent Class Analysis and Utility in Prediction of Future Exacerbation. The journal of allergy and clinical immunology In practice 2018. (9) Fitzpatrick AM, Jackson DJ, Mauger DT, Boehmer SJ, Phipatanakul W, Sheehan WJ, Moy JN, Paul IM, Bacharier LB, Cabana MD, Covar R, Holguin F, Lemanske RF, Jr., Martinez FD, Pongracic JA, Beigelman A, Baxi SN, Benson M, Blake K, Chmiel JF, Daines CL, Daines MO, Gaffin JM, Gentile DA, Gower WA, Israel E, Kumar HV, Lang JE, Lazarus SC, Lima JJ, Ly N, Marbin J, Morgan W, Myers RE, Olin JT, Peters SP, Raissy HH, Robison RG, Ross K, Sorkness CA, Thyne SM, Szefler SJ. Individualized therapy for persistent asthma in young children. The Journal of allergy and clinical immunology 2016; 138: 1608-1618 e1612. (10) Jochmann A, Artusio L, Robson K, Nagakumar P, Collins N, Fleming L, Bush A, Saglani S. Infection and inflammation in induced sputum from preschool children with chronic airways diseases. Pediatric pulmonology 2016; 51: 778-786. (11) Reddy MB, Liu AH, Robinson JL, Klinnert MD. Recurrent wheeze phenotypes in poor urban preschool-age children. The journal of allergy and clinical immunology In practice 2018. (12) Guiddir T, Saint-Pierre P, Purenne-Denis E, Lambert N, Laoudi Y, Couderc R, Gouvis-Echraghi R, Amat F, Just J. Neutrophilic Steroid-Refractory Recurrent Wheeze and Eosinophilic Steroid-Refractory Asthma in Children. The journal of allergy and clinical immunology In practice 2017; 5: 1351-1361 e1352. (13) Robinson PFM, Pattaroni C, Cook J, Gregory L, Alonso AM, Fleming LJ, Lloyd CM, Bush A, Marsland BJ, Saglani S. Lower airway microbiota associates with inflammatory phenotype in severe preschool wheeze. The Journal of allergy and clinical immunology 2018. (14) Schwerk N, Brinkmann F, Soudah B, Kabesch M, Hansen G. Wheeze in preschool age is associated with pulmonary bacterial infection and resolves after antibiotic therapy. PLoSOne 2011; 6: e27913. References [1] Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax 2010; 65: 499-504. [2] Alonso-Gonzalez R, Borgia F, Diller GP, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation 2013; 127: 882-90. [3] Abassi H, Gavotto A, Picot MC, et al. Impaired pulmonary function and its association with clinical outcomes, exercise capacity and quality of life in children with congenital heart disease. Int J Cardiol 2019; 285: 86-92. [4] Primhak RA, Whincup G, Tsanakas JN, Milner RD. Reduced vital capacity in insulin-dependent diabetes. Diabetes 1987; 36: 324-6. [5] Martin-Frias M, Lamas A, Lara E, Alonso M, Ros P, Barrio R. Pulmonary function in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2015; 28: 163-9. References (1) Zimet I. Respiratory pharmacology and therapeutics. Philadelphia: WB Saunders 1978: 1-7. (2) Amirav I. Aerosol Therapy. Ital J Pediatr 2004, 30: 147-156 (3) Amirav I, Balanov I, Gorenberg M, Groshar D, Luder AS. Nebulizer Hood Compared to Mask in Wheezy Infants: Aerosol Therapy Without Tears!, Arch Dis Child, 2003; 88: 719-723. (4) Nikander K. Adaptive aerosol delivery: the principles. Eur Respir Rev 1997; 7: 385-7. (5) Janssens HM, Krijgsman AM, Brown RJ, Verbraak AFM, de Jongste JC, Tiddens HAWM. Influence of tidal volume and respiratory rate on aerosol deposition in an infant upper airway model. Eur Respir J 1999;(Suppl 14) 30: 179. (6) Mellon M, Leflein J, Walton-Bowen K, Cruz-Rivera M, Fitzpatrick S, Smith JA. Comparable efficacy of administration with face mask or mouthpiece of nebulized budesonide inhalation suspension for infants and young children with persistent asthma. Am J Respir Crit Care Med 2000;162: 593-8. (7) Amirav, I., & Newhouse, M. T. (2016). Inhaled corticosteroids for asthma therapy in young children: does aerosol particle size matter? The Journal of Allergy and Clinical Immunology: In P

Referência(s)
Altmetric
PlumX