Revisão Acesso aberto Revisado por pares

Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer

2021; Elsevier BV; Volume: 12; Issue: 5 Linguagem: Inglês

10.1016/j.jcmgh.2021.07.006

ISSN

2352-345X

Autores

Samantha B. Kemp, Marina Pasca di Magliano, Howard C. Crawford,

Tópico(s)

Cancer Immunotherapy and Biomarkers

Resumo

Pancreatic ductal adenocarcinoma (PDA), the most common pancreatic cancer, is a nearly universally lethal malignancy. PDA is characterized by extensive infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells. Myeloid cells in the tumor microenvironment inhibit cytotoxic T-cell responses promoting carcinogenesis. Immune checkpoint therapy has not been effective in PDA, most likely because of this robust immune suppression, making it critical to elucidate mechanisms behind this phenomenon. Here, we review myeloid cell infiltration and cellular crosstalk in PDA progression and highlight current therapeutic approaches to target myeloid cell-driven immune suppression. Pancreatic ductal adenocarcinoma (PDA), the most common pancreatic cancer, is a nearly universally lethal malignancy. PDA is characterized by extensive infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells. Myeloid cells in the tumor microenvironment inhibit cytotoxic T-cell responses promoting carcinogenesis. Immune checkpoint therapy has not been effective in PDA, most likely because of this robust immune suppression, making it critical to elucidate mechanisms behind this phenomenon. Here, we review myeloid cell infiltration and cellular crosstalk in PDA progression and highlight current therapeutic approaches to target myeloid cell-driven immune suppression. SummaryThe immunosuppressive tumor microenvironment in pancreatic cancer is comprised in part by various myeloid cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). We discuss the role of TAMs and MDSCs in promoting immune suppression and highlight current myeloid targeted therapies. The immunosuppressive tumor microenvironment in pancreatic cancer is comprised in part by various myeloid cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). We discuss the role of TAMs and MDSCs in promoting immune suppression and highlight current myeloid targeted therapies. Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, with a 5-year survival rate of only 10%.1Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020.CA Cancer J Clin. 2020; 70: 7-30Crossref PubMed Scopus (7267) Google Scholar PDA is projected to become the second leading cause of cancer-related deaths by 2030.2Rahib L. Smith B.D. Aizenberg R. Rosenzweig A.B. Fleshman J.M. Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.Cancer Res. 2014; 74: 2913-2921Crossref PubMed Scopus (3339) Google Scholar This poor prognosis is due in part to most patients presenting with metastatic disease and overwhelming resistance to chemotherapy and radiotherapy approaches. The only potential cure for PDA is surgical resection, for which only 20% of patients are eligible, and ultimately 80% of these patients will relapse with local recurrence or metastatic disease.3Kleeff J. Korc M. Apte M. La Vecchia C. Johnson C.D. Biankin A.V. Neale R.E. Tempero M. Tuveson D.A. Hruban R.H. Neoptolemos J.P. Pancreatic cancer.Nat Rev Dis Primers. 2016; 2: 16022Crossref PubMed Google Scholar Current frontline therapies are the chemotherapy regimens FOLFIRINOX or gemcitabine/nab-paclitaxel, which modestly extend survival.4Conroy T. Desseigne F. Ychou M. Bouche O. Guimbaud R. Becouarn Y. Adenis A. Raoul J.L. Gourgou-Bourgade S. de la Fouchardiere C. Bennouna J. Bachet J.B. Khemissa-Akouz F. Pere-Verge D. Delbaldo C. Assenat E. Chauffert B. Michel P. Montoto-Grillot C. Ducreux M. Groupe Tumeurs Digestives of U. Intergroup P. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.N Engl J Med. 2011; 364: 1817-1825Crossref PubMed Scopus (4408) Google Scholar, 5Conroy T. Hammel P. Hebbar M. Ben Abdelghani M. Wei A.C. Raoul J.L. Chone L. Francois E. Artru P. Biagi J.J. Lecomte T. Assenat E. Faroux R. Ychou M. Volet J. Sauvanet A. Breysacher G. Di Fiore F. Cripps C. Kavan P. Texereau P. Bouhier-Leporrier K. Khemissa-Akouz F. Legoux J.L. Juzyna B. Gourgou S. O'Callaghan C.J. Jouffroy-Zeller C. Rat P. Malka D. Castan F. Bachet J.B. Canadian Cancer Trials G, the Unicancer GIPG. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer.N Engl J Med. 2018; 379: 2395-2406Crossref PubMed Scopus (0) Google Scholar, 6Von Hoff D.D. Ervin T. Arena F.P. Chiorean E.G. Infante J. Moore M. Seay T. Tjulandin S.A. Ma W.W. Saleh M.N. Harris M. Reni M. Dowden S. Laheru D. Bahary N. Ramanathan R.K. Tabernero J. Hidalgo M. Goldstein D. Van Cutsem E. Wei X. Iglesias J. Renschler M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.N Engl J Med. 2013; 369: 1691-1703Crossref PubMed Scopus (3455) Google Scholar The main genetic drivers of PDA are mutations in the KRAS oncogene,7Almoguera C. Shibata D. Forrester K. Martin J. Arnheim N. Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell. 1988; 53: 549-554Abstract Full Text PDF PubMed Scopus (1837) Google Scholar,8Hata T. Suenaga M. Marchionni L. Macgregor-Das A. Yu J. Shindo K. Tamura K. Hruban R.H. Goggins M. Genome-wide somatic copy number alterations and mutations in high-grade pancreatic intraepithelial neoplasia.Am J Pathol. 2018; 188: 1723-1733Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar along with loss of functional tumor suppressors (TP53, SMAD4, INK4A).9Maitra A. Hruban R.H. Pancreatic cancer.Annu Rev Pathol. 2008; 3: 157-188Crossref PubMed Scopus (526) Google Scholar,10Hezel A.F. Kimmelman A.C. Stanger B.Z. Bardeesy N. Depinho R.A. Genetics and biology of pancreatic ductal adenocarcinoma.Genes Dev. 2006; 20: 1218-1249Crossref PubMed Scopus (805) Google Scholar Both acinar cells and ductal cells within the healthy pancreas can give rise to PDA, although acinar cells appear to have a higher propensity for transformation.11Kopp J.L. von Figura G. Mayes E. Liu F.F. Dubois C.L. Morris J.P.t. Pan F.C. Akiyama H. Wright C.V. Jensen K. Hebrok M. Sander M. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma.Cancer Cell. 2012; 22: 737-750Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar Acinar cells go through a plastic transdifferentiation process called acinar to ductal metaplasia (ADM), which can progress to pancreatic intraepithelial neoplasia (PanINs) and ultimately adenocarcinoma.12Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma.Nat Rev Gastroenterol Hepatol. 2017; 14: 296-304Crossref PubMed Scopus (101) Google Scholar These stages of progression of human PDA have been recapitulated in genetically engineered mouse models that target oncogenic Kras expression to the pancreas, combined with inactivation of tumor suppressors.13Aguirre A.J. Bardeesy N. Sinha M. Lopez L. Tuveson D.A. Horner J. Redston M.S. DePinho R.A. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma.Genes Dev. 2003; 17: 3112-3126Crossref PubMed Scopus (752) Google Scholar, 14Hingorani S.R. Petricoin E.F. Maitra A. Rajapakse V. King C. Jacobetz M.A. Ross S. Conrads T.P. Veenstra T.D. Hitt B.A. Kawaguchi Y. Johann D. Liotta L.A. Crawford H.C. Putt M.E. Jacks T. Wright C.V. Hruban R.H. Lowy A.M. Tuveson D.A. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse.Cancer Cell. 2003; 4: 437-450Abstract Full Text Full Text PDF PubMed Scopus (1646) Google Scholar, 15Hingorani S.R. Wang L. Multani A.S. Combs C. Deramaudt T.B. Hruban R.H. Rustgi A.K. Chang S. Tuveson D.A. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice.Cancer Cell. 2005; 7: 469-483Abstract Full Text Full Text PDF PubMed Scopus (1495) Google Scholar PDA is characterized by a dense fibroinflammatory stroma that consists of fibroblasts, vasculature, nerves, extracellular matrix components, and infiltrating immune cells.16Chu G.C. Kimmelman A.C. Hezel A.F. DePinho R.A. Stromal biology of pancreatic cancer.J Cell Biochem. 2007; 101: 887-907Crossref PubMed Scopus (246) Google Scholar The immune cells within the tumor microenvironment (TME) are immunosuppressive in nature.17Clark C.E. Hingorani S.R. Mick R. Combs C. Tuveson D.A. Vonderheide R.H. Dynamics of the immune reaction to pancreatic cancer from inception to invasion.Cancer Res. 2007; 67: 9518-9527Crossref PubMed Scopus (605) Google Scholar Within the TME, there is an extensive infiltration of myeloid cells that directly promote tumor progression18Zhang Y. Yan W. Mathew E. Kane K.T. Brannon 3rd, A. Adoumie M. Vinta A. Crawford H.C. Pasca di Magliano M. Epithelial-myeloid cell crosstalk regulates acinar cell plasticity and pancreatic remodeling in mice.Elife. 2017; 6Crossref Scopus (20) Google Scholar and prevent T-cell responses.19Mitchem J.B. Brennan D.J. Knolhoff B.L. Belt B.A. Zhu Y. Sanford D.E. Belaygorod L. Carpenter D. Collins L. Piwnica-Worms D. Hewitt S. Udupi G.M. Gallagher W.M. Wegner C. West B.L. Wang-Gillam A. Goedegebuure P. Linehan D.C. DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses.Cancer Res. 2013; 73: 1128-1141Crossref PubMed Scopus (575) Google Scholar Accordingly, myeloid cell abundance in tumors correlates with worse outcomes,20Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.Clin Cancer Res. 2013; 19: 3404-3415Crossref PubMed Scopus (297) Google Scholar,21Tsujikawa T. Kumar S. Borkar R.N. Azimi V. Thibault G. Chang Y.H. Balter A. Kawashima R. Choe G. Sauer D. El Rassi E. Clayburgh D.R. Kulesz-Martin M.F. Lutz E.R. Zheng L. Jaffee E.M. Leyshock P. Margolin A.A. Mori M. Gray J.W. Flint P.W. Coussens L.M. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis.Cell Rep. 2017; 19: 203-217Abstract Full Text Full Text PDF PubMed Scopus (217) Google Scholar whereas the abundance of tumor-infiltrating T cells correlates with longer survival.22Balachandran V.P. Luksza M. Zhao J.N. Makarov V. Moral J.A. Remark R. Herbst B. Askan G. Bhanot U. Senbabaoglu Y. Wells D.K. Cary C.I.O. Grbovic-Huezo O. Attiyeh M. Medina B. Zhang J. Loo J. Saglimbeni J. Abu-Akeel M. Zappasodi R. Riaz N. Smoragiewicz M. Kelley Z.L. Basturk O. Westmead H. Fremantle H. St John of God H. Royal Adelaide H. Flinders Medical C. Envoi P. Princess Alexandria H. Austin H. Hopkins Johns Gonen M. Levine A.J. Allen P.J. Fearon D.T. Merad M. Gnjatic S. Iacobuzio-Donahue C.A. Wolchok J.D. DeMatteo R.P. Chan T.A. Greenbaum B.D. Merghoub T. Leach S.D. Australian Pancreatic Cancer Genome IGarvan Institute of Medical RPrince of Wales HRoyal North Shore HUniversity of G, St Vincent's HInstitute QBMRUniversity of Melbourne CfCRUniversity of Queensland IfMBBankstown H, Liverpool H, Royal Prince Alfred Hospital COBLMedical I, Cancer AR-NCfARoIdentification of unique neoantigen qualities in long-term survivors of pancreatic cancer.Nature. 2017; 551: 512-516Crossref PubMed Scopus (444) Google Scholar Immune therapy has revolutionized treatment for several malignancies.23Weiss S.A. Wolchok J.D. Sznol M. Immunotherapy of melanoma: facts and hopes.Clin Cancer Res. 2019; 25: 5191-5201Crossref PubMed Scopus (0) Google Scholar,24Doroshow D.B. Sanmamed M.F. Hastings K. Politi K. Rimm D.L. Chen L. Melero I. Schalper K.A. Herbst R.S. Immunotherapy in non-small cell lung cancer: facts and hopes.Clin Cancer Res. 2019; 25: 4592-4602Crossref PubMed Scopus (155) Google Scholar However, the benefit of single agent immunotherapy has not yet extended to PDA,25Brahmer J.R. Tykodi S.S. Chow L.Q. Hwu W.J. Topalian S.L. Hwu P. Drake C.G. Camacho L.H. Kauh J. Odunsi K. Pitot H.C. Hamid O. Bhatia S. Martins R. Eaton K. Chen S. Salay T.M. Alaparthy S. Grosso J.F. Korman A.J. Parker S.M. Agrawal S. Goldberg S.M. Pardoll D.M. Gupta A. Wigginton J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.N Engl J Med. 2012; 366: 2455-2465Crossref PubMed Scopus (5182) Google Scholar,26Royal R.E. Levy C. Turner K. Mathur A. Hughes M. Kammula U.S. Sherry R.M. Topalian S.L. Yang J.C. Lowy I. Rosenberg S.A. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma.J Immunother. 2010; 33: 828-833Crossref PubMed Scopus (645) Google Scholar with the exception of the 1% of PDA patients with microsatellite instability high tumors.27Le D.T. Durham J.N. Smith K.N. Wang H. Bartlett B.R. Aulakh L.K. Lu S. Kemberling H. Wilt C. Luber B.S. Wong F. Azad N.S. Rucki A.A. Laheru D. Donehower R. Zaheer A. Fisher G.A. Crocenzi T.S. Lee J.J. Greten T.F. Duffy A.G. Ciombor K.K. Eyring A.D. Lam B.H. Joe A. Kang S.P. Holdhoff M. Danilova L. Cope L. Meyer C. Zhou S. Goldberg R.M. Armstrong D.K. Bever K.M. Fader A.N. Taube J. Housseau F. Spetzler D. Xiao N. Pardoll D.M. Papadopoulos N. Kinzler K.W. Eshleman J.R. Vogelstein B. Anders R.A. Diaz Jr., L.A. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science. 2017; 357: 409-413Crossref PubMed Scopus (2756) Google Scholar Immune checkpoint therapy acts by reactivating T-cell effector functions most commonly through blockade of programmed cell death 1 (PD-1) or cytotoxic T-lymphocyte antigen 4 (CTLA-4), unleashing anti-tumor T-cell responses that result in reduced tumor burden.28Waldman A.D. Fritz J.M. Lenardo M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat Rev Immunol. 2020; 20: 651-668Crossref PubMed Scopus (354) Google Scholar Although single agent immunotherapy has not been effective in PDA, recent trials using combination of targeting of T cells and myeloid cells are ongoing, supported by robust preclinical data. In this review, we will describe the critical role myeloid cells play as mediators of immune suppression in PDA and highlight potential strategies to target these cells in the context of combination immunotherapy. In normal physiology, myeloid cells develop from hematopoietic stem cells in the bone marrow in a process called myelopoiesis.29Messmer M.N. Netherby C.S. Banik D. Abrams S.I. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy.Cancer Immunol Immunother. 2015; 64: 1-13Crossref PubMed Scopus (65) Google Scholar Myeloid cells are defined as CD45+ CD11b+ cells but further differentiate into distinct populations: macrophages, granulocytes, mast cells, and dendritic cells, all components of the innate immune system. Macrophages within the tumor are referred to as tumor-associated macrophages (TAMs) and have distinct features compared with normal macrophages. Granulocytes can be further divided into eosinophils, basophils, and neutrophils. Within the TME, neutrophils and monocytes are often in an immature state referred to as immature myeloid cells/myeloid-derived suppressor cell (MDSC). In this review we will focus specifically on the role of TAMs and MDSCs in PDA progression (Figure 1). Within the PDA TME, macrophages are an abundant immune cell population.30Long K.B. Collier A.I. Beatty G.L. Macrophages: key orchestrators of a tumor microenvironment defined by therapeutic resistance.Mol Immunol. 2019; 110: 3-12Crossref PubMed Scopus (13) Google Scholar,31DeNardo D.G. Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy.Nat Rev Immunol. 2019; 19: 369-382Crossref PubMed Scopus (403) Google Scholar Macrophages derived from embryonic progenitors constitute the tissue-resident population; macrophages can also derive from infiltrating monocytes.32Wynn T.A. Chawla A. Pollard J.W. Macrophage biology in development, homeostasis and disease.Nature. 2013; 496: 445-455Crossref PubMed Scopus (2209) Google Scholar Macrophages perform multiple physiological functions, including phagocytosis to eliminate debris, antigen presentation, and cytokine secretion to recruit other immune cells to the site of injury.33Watanabe S. Alexander M. Misharin A.V. Budinger G.R.S. The role of macrophages in the resolution of inflammation.J Clin Invest. 2019; 129: 2619-2628Crossref PubMed Scopus (132) Google Scholar,34Murray P.J. Wynn T.A. Protective and pathogenic functions of macrophage subsets.Nat Rev Immunol. 2011; 11: 723-737Crossref PubMed Scopus (2826) Google Scholar Macrophages are defined by expression of CD11b+ CD68+ EMR1+ in humans and CD11b+ CD68+ F4/80+ in mice. Macrophages are plastic cells that exist on a spectrum of differentiation states. On the basis of in vitro assays, macrophages can be classified into 2 main subtypes on each extreme of the spectrum. M1, or classically activated, macrophages are generally considered to have anti-tumor activities and can be induced through interferon-gamma and toll-like receptor stimuli.35Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis.Cell. 2010; 141: 39-51Abstract Full Text Full Text PDF PubMed Scopus (2846) Google Scholar M1 macrophages are characterized by high expression of interleukin 12 (IL12), tumor necrosis factor (TNF), and inducible nitric oxide synthase. M2, or alternatively activated, macrophages are considered to have pro-tumor activities36Mantovani A. Sozzani S. Locati M. Allavena P. Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.Trends Immunol. 2002; 23: 549-555Abstract Full Text Full Text PDF PubMed Scopus (3419) Google Scholar and can be induced through the cytokines IL4 and IL13.37Gordon S. Alternative activation of macrophages.Nat Rev Immunol. 2003; 3: 23-35Crossref PubMed Scopus (4400) Google Scholar M2 macrophages lose their antigen presentation abilities and act to instead suppress the immune response through a variety of mechanisms. The M1/M2 classification is an oversimplification that is helpful for broad description but does not accurately describe the in vivo heterogeneity of TAMs. TAMs within the tumor are derived from either infiltrating monocytes or embryonically derived, tissue-resident macrophages.38Zhu Y. Herndon J.M. Sojka D.K. Kim K.W. Knolhoff B.L. Zuo C. Cullinan D.R. Luo J. Bearden A.R. Lavine K.J. Yokoyama W.M. Hawkins W.G. Fields R.C. Randolph G.J. DeNardo D.G. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression.Immunity. 2017; 47: 323-338 e6Abstract Full Text Full Text PDF PubMed Scopus (236) Google Scholar Furthermore, the heterogeneity of TAM origin has functional implications, where monocyte derived TAMs have increased antigen presentation abilities, and embryonically derived TAMs shape the fibrotic response.38Zhu Y. Herndon J.M. Sojka D.K. Kim K.W. Knolhoff B.L. Zuo C. Cullinan D.R. Luo J. Bearden A.R. Lavine K.J. Yokoyama W.M. Hawkins W.G. Fields R.C. Randolph G.J. DeNardo D.G. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression.Immunity. 2017; 47: 323-338 e6Abstract Full Text Full Text PDF PubMed Scopus (236) Google Scholar Within the TME, TAMs conform to neither the M1 nor the M2 phenotype but rather have traits of both polarization states.35Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis.Cell. 2010; 141: 39-51Abstract Full Text Full Text PDF PubMed Scopus (2846) Google Scholar Their overall pro-tumor function explains the inverse correlation between TAMs and survival.39Kurahara H. Shinchi H. Mataki Y. Maemura K. Noma H. Kubo F. Sakoda M. Ueno S. Natsugoe S. Takao S. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer.J Surg Res. 2011; 167: e211-e219Abstract Full Text Full Text PDF PubMed Scopus (367) Google Scholar,40Ino Y. Yamazaki-Itoh R. Shimada K. Iwasaki M. Kosuge T. Kanai Y. Hiraoka N. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer.Br J Cancer. 2013; 108: 914-923Crossref PubMed Scopus (426) Google Scholar TAMs have been extensively studied in PDA. Because of the plasticity of macrophages, TAM targeted therapy aims to reprogram them to their anti-tumor functions. The colony-stimulating factor 1/colony-stimulating factor 1 receptor (CSF1/CSF1R) axis recruits and polarizes immunosuppressive TAMs. CSF1R is the major lineage regulator for all macrophage subsets.35Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis.Cell. 2010; 141: 39-51Abstract Full Text Full Text PDF PubMed Scopus (2846) Google Scholar PDA tumors are infiltrated by CSF1R+ macrophages.41Candido J.B. Morton J.P. Bailey P. Campbell A.D. Karim S.A. Jamieson T. Lapienyte L. Gopinathan A. Clark W. McGhee E.J. Wang J. Escorcio-Correia M. Zollinger R. Roshani R. Drew L. Rishi L. Arkell R. Evans T.R.J. Nixon C. Jodrell D.I. Wilkinson R.W. Biankin A.V. Barry S.T. Balkwill F.R. Sansom O.J. CSF1R(+) macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype.Cell Rep. 2018; 23: 1448-1460Abstract Full Text Full Text PDF PubMed Scopus (76) Google Scholar,42Zhu Y. Knolhoff B.L. Meyer M.A. Nywening T.M. West B.L. Luo J. Wang-Gillam A. Goedegebuure S.P. Linehan D.C. DeNardo D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.Cancer Res. 2014; 74: 5057-5069Crossref PubMed Scopus (629) Google Scholar Inhibition of CSF1R in mice results in reduced tumor burden and an increase in T-cell infiltration, providing evidence that targeting TAMs relieves immune suppression in the TME.19Mitchem J.B. Brennan D.J. Knolhoff B.L. Belt B.A. Zhu Y. Sanford D.E. Belaygorod L. Carpenter D. Collins L. Piwnica-Worms D. Hewitt S. Udupi G.M. Gallagher W.M. Wegner C. West B.L. Wang-Gillam A. Goedegebuure P. Linehan D.C. DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses.Cancer Res. 2013; 73: 1128-1141Crossref PubMed Scopus (575) Google Scholar,41Candido J.B. Morton J.P. Bailey P. Campbell A.D. Karim S.A. Jamieson T. Lapienyte L. Gopinathan A. Clark W. McGhee E.J. Wang J. Escorcio-Correia M. Zollinger R. Roshani R. Drew L. Rishi L. Arkell R. Evans T.R.J. Nixon C. Jodrell D.I. Wilkinson R.W. Biankin A.V. Barry S.T. Balkwill F.R. Sansom O.J. CSF1R(+) macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype.Cell Rep. 2018; 23: 1448-1460Abstract Full Text Full Text PDF PubMed Scopus (76) Google Scholar Furthermore, CSF1R inhibition in mice sensitizes PDA tumors to either PD-1 or CTLA-4 antagonists,42Zhu Y. Knolhoff B.L. Meyer M.A. Nywening T.M. West B.L. Luo J. Wang-Gillam A. Goedegebuure S.P. Linehan D.C. DeNardo D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.Cancer Res. 2014; 74: 5057-5069Crossref PubMed Scopus (629) Google Scholar suggesting that although single agent immunotherapy is not sufficient to reduce tumor burden, immune checkpoint blockade in combination with TAM modulating therapies can effectively reverse immune therapy resistance. The CCL2/CCR2 chemokine axis is critical for the genesis of TAMs. CCL2 produced by tumor cells recruits CCR2+ monocytes from the bone marrow to the circulation that then differentiate into TAMs after entering the tumor tissue.43Shi C. Pamer E.G. Monocyte recruitment during infection and inflammation.Nat Rev Immunol. 2011; 11: 762-774Crossref PubMed Scopus (1550) Google Scholar PDA patients with high levels of circulating monocytes have worse overall survival rates.20Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.Clin Cancer Res. 2013; 19: 3404-3415Crossref PubMed Scopus (297) Google Scholar Monocytes in circulation do not possess the same immunosuppressive abilities as TAMs, suggesting the cellular crosstalk in the TME is critical for this function.20Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.Clin Cancer Res. 2013; 19: 3404-3415Crossref PubMed Scopus (297) Google Scholar CCR2 blockade in mice results in retention of CCR2+ monocytes in the bone marrow, impairing tumor growth.20Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.Clin Cancer Res. 2013; 19: 3404-3415Crossref PubMed Scopus (297) Google Scholar CCR2 blockade in combination with gemcitabine further impairs tumor growth.20Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.Clin Cancer Res. 2013; 19: 3404-3415Crossref PubMed Scopus (297) Google Scholar Similarly, in a PDA clinical trial, patients with borderline resectable and locally advanced disease were treated with a combination of FOLFIRINOX and CCR2 antagonist (PF-04136309).44Nywening T.M. Wang-Gillam A. Sanford D.E. Belt B.A. Panni R.Z. Cusworth B.M. Toriola A.T. Nieman R.K. Worley L.A. Yano M. Fowler K.J. Lockhart A.C. Suresh R. Tan B.R. Lim K.H. Fields R.C. Strasberg S.M. Hawkins W.G. DeNardo D.G. Goedegebuure S.P. Linehan D.C. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial.Lancet Oncol. 2016; 17: 651-662Abstract Full Text Full Text PDF PubMed Google Scholar After treatment, patients had reduced circulating CCR2+ monocytes and subsequently fewer TAMs in the tumor, as well as increased CD8+ T cells.44Nywening T.M. Wang-Gillam A. Sanford D.E. Belt B.A. Panni R.Z. Cusworth B.M. Toriola A.T. Nieman R.K. Worley L.A. Yano M. Fowler K.J. Lockhart A.C. Suresh R. Tan B.R. Lim K.H. Fields R.C. Strasberg S.M. Hawkins W.G. DeNardo D.G. Goedegebuure S.P. Linehan D.C. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial.Lancet Oncol. 2016; 17: 651-662Abstract Full Text Full Text PDF PubMed Google Scholar However, a recent phase 1b trial evaluated PF-04136309 in combination with gemcitabine/nab-paclitaxel in patients with metastatic PDA.45Noel M. O'Reilly E.M. Wolpin B.M. Ryan D.P. Bullock A.J. Britten C.D. Linehan D.C. Belt B.A. Gamelin E.C. Ganguly B. Yin D. Joh T. Jacobs I.A. Taylor C.T. Lowery M.A. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma.Invest New Drugs. 2020; 38: 800-811Crossref PubMed Scopus (35) Google Scholar Unlike the previous phase 1b trial, this study did not show that PF-04136309 added additional benefit to the prescribed chemotherapy regimen.45Noel M. O'Reilly E.M. Wolpin B.M. Ryan D.P. Bullock A.J. Britten C.D. Linehan D.C. Belt B.A. Gamelin E.C. Ganguly B. Yin D. Joh T. Jacobs I.A. Taylor C.T. Lowery M.A. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma.Invest New Drugs. 2020; 38: 800-811Crossref PubMed Scopus (35) Google Scholar Furthermore, in the setting of metastatic PDA, CCR2 inhibition in combination with gemcitabine/nab-paclitaxel was not tolerable in patients.45Noel M. O'Reilly E.M. Wolpin B.M. Ryan D.P. Bullock A.J. Britten C.D. Linehan D.C. Belt B.A. Gamelin E.C. Ganguly B. Yin D. Joh T. Jacobs I.A. Taylor C.T. Lowery M.A. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma.Invest New Drugs. 2020; 38: 800-811Crossref PubMed Scopus (35) Google Scholar Taken together, these reports suggest that the benefit of CCR2 inhibition may be limited to locally advanced disease that does not extend to metastatic patients. In addition to an increase in macrophage frequency in PDA, a recent study used multiplex immunofluorescence to evaluate the spatial relationship of M1 and M2 macrophages in human PDA.46Vayrynen S

Referência(s)