Artigo Acesso aberto Revisado por pares

The performance of solar cells using chlorophyll dye from Syzygium paniculatum

2021; Oxford University Press; Volume: 5; Issue: 3 Linguagem: Inglês

10.1093/ce/zkab022

ISSN

2515-4230

Autores

Sri Wuryanti,

Tópico(s)

Quantum Dots Synthesis And Properties

Resumo

Abstract In this study, analysis was performed of the macro characterization of solar cells with chlorophyll dye from Syzygium paniculatum, using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Solar cells based on titanium dioxide (TiO2) nanomaterial and chlorophyll dye from S. paniculatum can increase efficiency due to flavonoids and batulinic acid content. Photoanode TiO2 is one of the essential factors determining the photovoltaic properties of dye-sensitized solar cells (DSSCs) and shade, which broadens the absorption spectrum. Furthermore, the method used in this research involved varying the colour of the S. paniculatum leaves, namely red (SP-Red), green (SP-Green) and a red–green mix (SP-Mix). From a macro analysis, SEM observations resulted in agglomerated and aggregated TiO2-polyethylene glycol (PEG)-dye layers with irregular shapes. EDX observation resulted in a peak in Ti at 5 keV and all constituents were detected with an O:Ti ratio of 3.47:1 for FTO-TiO2/PEG using SP-Green. Measurement of voltage-current (IV) using a digital multimeter indicated that the best occurred in the DSSC with SP-Green, resulting in a short-circuit current density (Isc) of 0.0047 mA/cm2, an open-circuit voltage (Voc) of 0.432 V, a charging factor (FF) of 0.749 and an efficiency (η) of 3.724%.

Referência(s)
Altmetric
PlumX