Artigo Revisado por pares

Optimal-Transport-Based Control of Particle Swarms for Orbiting Rainbows Concept

2021; American Institute of Aeronautics and Astronautics; Volume: 44; Issue: 11 Linguagem: Inglês

10.2514/1.g006001

ISSN

1533-3884

Autores

Carlo Sinigaglia, Saptarshi Bandyopadhyay, Marco B. Quadrelli, Francesco Braghin,

Tópico(s)

Space Satellite Systems and Control

Resumo

No AccessEngineering NotesOptimal-Transport-Based Control of Particle Swarms for Orbiting Rainbows ConceptCarlo Sinigaglia, Saptarshi Bandyopadhyay, Marco Quadrelli and Francesco BraghinCarlo SinigagliaPolytechnic University of Milan, 20156 Milan, Italy*Ph.D. Candidate, Department of Mechanical Engineering, Via La Masa, 1.Search for more papers by this author, Saptarshi BandyopadhyayCalifornia Institute of Technology, Pasadena, California 91109-8099†Robotics Technologist, Maritime and Multi-Agent Autonomy, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 198-219.Search for more papers by this author, Marco QuadrelliCalifornia Institute of Technology, Pasadena, California 91109-8099‡Group Supervisor, Mobility and Robotic Systems, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 198-219. Associate Fellow AIAA.Search for more papers by this author and Francesco BraghinPolytechnic University of Milan, 20156 Milan, Italy§Full Professor, Department of Mechanical Engineering, Via La Masa, 1.Search for more papers by this authorPublished Online:9 Aug 2021https://doi.org/10.2514/1.G006001SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Corbacho V. V., Kuiper H. and Gill E., “Review on Thermal and Mechanical Challenges in the Development of Deployable Space Optics,” Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 6, No. 1, 2020, pp. 1–30. https://doi.org/10.1117/1.JATIS.6.1.010902 Google Scholar[2] Quadrelli M. B., Basinger S., Arumugam D. and Swartzlander G., “NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems,” NASA Innovative Advanced Concepts (NIAC) NNH14ZOA001N, Feb. 2017. Google Scholar[3] Quadrelli M. B., Basinger S. and Sidick E., “Unconventional Imaging with Contained Granular Media,” Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2017, Vol. 10410, International Soc. for Optics and Photonics, SPIE Optical Engineering + Applications, San Diego, CA, 2017, Paper 104100 W. https://doi.org/10.1117/12.2272617 Google Scholar[4] Quadrelli M. B., Basinger S., Swartzlander G. and Arumugam D., “Dynamics and Control of Granular Imaging Systems,” AIAA SPACE 2015 Conference and Exposition, AIAA Paper 2015-4484, 2015. https://doi.org/10.2514/6.2015-4484 LinkGoogle Scholar[5] Quadrelli M. B. and Ius P., “Modeling and Simulation of Trapping Mechanisms of Granular Media In Space,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5572, 2016. https://doi.org/10.2514/6.2016-5572 Google Scholar[6] Basinger S. A., Palacios D., Quadrelli M. B. and Swartzlander G. A., “Optics of a Granular Imaging System (ie “Orbiting Rainbows”),” UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VII, Vol. 9602, International Soc. for Optics and Photonics, SPIE Optical Engineering + Applications, San Diego, CA, 2015, p. 96020E. https://doi.org/10.1117/12.2185699 Google Scholar[7] Krishnan V. and Martínez S., “Distributed Optimal Transport for the Deployment of Swarms,” 2018 IEEE Conference on Decision and Control (CDC), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 4583–4588. https://doi.org/10.1109/CDC.2018.8619816 Google Scholar[8] Rossi F., Bandyopadhyay S., Wolf M. and Pavone M., “Review of Multi-Agent Algorithms for Collective Behavior: A Structural Taxonomy,” IFAC-PapersOnLine, Vol. 51, No. 12, 2018, pp. 112–117. https://doi.org/10.1016/j.ifacol.2018.07.097 CrossrefGoogle Scholar[9] Bandyopadhyay S., Chung S.-J. and Hadaegh F. Y., “A Probabilistic Eulerian Approach for Motion Planning of a Large-Scale Swarm of Robots,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Inst. of Electrical and Electronics Engineers, New York, 2016, pp. 3822–3829. https://doi.org/10.1109/IROS.2016.7759562 Google Scholar[10] Demir N., Eren U. and Açıkmeşe B., “Decentralized Probabilistic Density Control of Autonomous Swarms with Safety Constraints,” Autonomous Robots, Vol. 39, No. 4, 2015, pp. 537–554. https://doi.org/10.1007/s10514-015-9470-z CrossrefGoogle Scholar[11] Açıkmeşe B. and Bayard D. S., “Probabilistic Swarm Guidance for Collaborative Autonomous Agents,” 2014 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 477–482. https://doi.org/10.1109/ACC.2014.6859358 Google Scholar[12] Açikmeşe B. and Bayard D. S., “A Markov Chain Approach to Probabilistic Swarm Guidance,” 2012 American Control Conference (ACC), Inst. of Electrical and Electronics Engineers, New York, 2012, pp. 6300–6307. https://doi.org/10.1109/ACC.2012.6314729 Google Scholar[13] Brockett R. and Khaneja N., “On the Stochastic Control of Quantum Ensembles,” System Theory, Springer, Boston, MA, 2000, pp. 75–96. https://doi.org/10.1007/978-1-4615-5223-9_6 Google Scholar[14] Zlotnik A. and Li S., “Synthesis of Optimal Ensemble Controls for Linear Systems Using the Singular Value Decomposition,” 2012 American Control Conference (ACC), Inst. of Electrical and Electronics Engineers, New York, 2012, pp. 5849–5854. https://doi.org/10.1109/ACC.2012.6315297 Google Scholar[15] Chen Y., “Modeling and Control of Collective Dynamics: From Schrödringer Bridges to Optimal Mass Transport,” Ph. D. Dissertation, Dept. of Mechanical Engineering, Univ. of Minnesota, 2016, https://hdl.handle.net/11299/182235. Google Scholar[16] De Badyn M. H., Eren U., Açikmeşe B. and Mesbahi M., “Optimal Mass Transport and Kernel Density Estimation for State-Dependent Networked Dynamic Systems,” 2018 IEEE Conference on Decision and Control (CDC), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 1225–1230. https://doi.org/10.1109/CDC.2018.8619808 Google Scholar[17] Villani C., Optimal Transport: Old and New, Vol. 338, Springer-Verlag, Berlin, 2008, Part I, Sec. 6. https://doi.org/10.1007/978-3-540-71050-9 Google Scholar[18] Bandyopadhyay S., Chung S.-J. and Hadaegh F. Y., “Probabilistic Swarm Guidance Using Optimal Transport,” 2014 IEEE Conference on Control Applications (CCA), Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 498–505. https://doi.org/10.1109/CCA.2014.6981395 Google Scholar[19] Rubner Y., Tomasi C. and Guibas L. J., “The Earth Mover’s Distance as a Metric for Image Retrieval,” International Journal of Computer Vision, Vol. 40, No. 2, 2000, pp. 99–121. https://doi.org/10.1023/A:1026543900054 CrossrefGoogle Scholar[20] Kolouri S., Park S., Thorpe M., Slepčev D. and Rohde G. K., “Optimal Mass Transport: Signal Processing and Machine-Learning Applications,” IEEE Signal Process Magazine, Vol. 34, No. 4, 2017, pp. 43–59. https://doi.org/10.1109/MSP.2017.2695801 Google Scholar[21] Yang Y. and Engquist B., “Analysis of Optimal Transport and Related Misfit Functions in Full-Waveform Inversion,” Geophysics, Vol. 83, No. 1, 2018, pp. A7–A12. https://doi.org/10.1190/geo2017-0264.1 CrossrefGoogle Scholar[22] Bandyopadhyay S. and Quadrelli M., “Optimal Transport Based Control of Granular Imaging System in Space,” 9th International Workshop on Satellite Constellations and Formation Flying, Boulder, Colorado, June 2017. Google Scholar[23] Zhang K. and Zhang Y., “Optimal Reconfiguration with Collision Avoidance for a Granular Spacecraft Using Laser Pressure,” Acta Astronautica, Vol. 160, 2019, pp. 163–174. https://doi.org/10.1016/j.actaastro.2019.04.021 CrossrefGoogle Scholar[24] Brockett R., “Notes on the Control of the Liouville Equation,” Control of Partial Differential Equations, Springer, Berlin, 2012, pp. 101–129. https://doi.org/10.1007/978-3-642-27893-8_2 Google Scholar[25] Monge G., “Mémoire sur la théorie des déblais et des remblais,” Histoire de l’Académie Royale des Sciences de Paris, 1781, https://www.worldcat.org/title/memoire-sur-la-theorie-des-deblais-et-des-remblais/oclc/51928110?referer=di&ht=edition. Google Scholar[26] Ambrosio L., “Lecture Notes on Optimal Transport Problems,” Mathematical Aspects of Evolving Interfaces, Springer, Berlin, 2003, pp. 1–52. https://doi.org/10.1007/978-3-540-39189-0_1 Google Scholar[27] Kantorovitch L., “On the Translocation of Masses,” Management Science, Vol. 5, No. 1, 1958, pp. 1–4. Google Scholar[28] Snow M. and Van lent J., “Monge’s Optimal Transport Distance for Image Classification,” arXiv preprint arXiv:1612.00181, 2016, https://arxiv.org/abs/1612.00181. Google Scholar[29] Sinigaglia C., “Granular Imager: Modeling and Control,” Master’s Thesis, Dept. of Mechanical Engineering, Polytechnic Univ. of Milan, 2019, https://dartslab.jpl.nasa.gov/References/pdf/other/2019-granularimager-Sinigaglia.pdf. Google Scholar[30] Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Millman K. J., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., Polat İ., Feng Y., Moore E. W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris C. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P. and SciPy 1.0 Contributors, “SciPy: 1.0 Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, Vol. 17, 2020, pp. 261–272. https://doi.org/10.1038/s41592-019-0686-2 CrossrefGoogle Scholar[31] Yu J., Vishwanathan S., Günter S. and Schraudolph N. N., “A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning,” Journal of Machine Learning Research, Vol. 11, 2010, pp. 1145–1200. https://doi.org/10.1145/1390156.1390309 Google Scholar[32] Pickem D., Glotfelter P., Wang L., Mote M., Ames A., Feron E. and Egerstedt M., “The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed,” 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, New York, 2017, pp. 1699–1706. https://doi.org/10.1109/ICRA.2017.7989200 Google Scholar[33] Pickem D., Lee M. and Egerstedt M., “The GRITSBot in Its Natural Habitat-A Multi-Robot Testbed,” 2015 IEEE International Conference on Robotics and Automation (ICRA), Inst. of Electrical and Electronics Engineers, New York, 2015, pp. 4062–4067. https://doi.org/10.1109/ICRA.2015.7139767 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byCentroidal Voronoi Tessellation and Model Predictive Control–Based Macro-Micro Trajectory Optimization of Microsatellite SwarmSpace: Science & Technology, Vol. 2022 What's Popular Volume 44, Number 11November 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. Under the copyright claimed herein, the U.S. Government has a royalty-free license to exercise all rights for Governmental purposes. All other rights are reserved by the copyright owner. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. AcknowledgmentsThe U.S. Government sponsorship is acknowledged. This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA, during the internship of the first author sponsored by the JPL Visiting Student Research Program. The reference project for the activity was the Orbiting Rainbows concept, developed by Marco B. Quadrelli under a contract with the NASA Innovative Advanced Concepts Program NNH14ZOA001N-14NIAC_A2.PDF Received15 February 2021Accepted19 June 2021Published online9 August 2021

Referência(s)