Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC
2021; EDP Sciences; Volume: 251; Linguagem: Inglês
10.1051/epjconf/202125103047
ISSN2101-6275
AutoresC. Biscarat, Sylvain Caillou, C. Rougier, Jan Stark, Jad Zahreddine,
Tópico(s)High-Energy Particle Collisions Research
ResumoThe physics reach of the HL-LHC will be limited by how efficiently the experiments can use the available computing resources, i.e. affordable software and computing are essential. The development of novel methods for charged particle reconstruction at the HL-LHC incorporating machine learning techniques or based entirely on machine learning is a vibrant area of research. In the past two years, algorithms for track pattern recognition based on graph neural networks (GNNs) have emerged as a particularly promising approach. Previous work mainly aimed at establishing proof of principle. In the present document we describe new algorithms that can handle complex realistic detectors. The new algorithms are implemented in ACTS, a common framework for tracking software. This work aims at implementing a realistic GNN-based algorithm that can be deployed in an HL-LHC experiment.
Referência(s)