Artigo Revisado por pares

Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink

2021; Oxford University Press; Volume: 74; Issue: 1 Linguagem: Inglês

10.1093/jpp/rgab116

ISSN

2042-7158

Autores

Rossella Dorati, Enrica Chiesa, Federica Riva, Tiziana Modena, Stefania Marconi, Ferdinando Auricchio, Ida Genta, Bice Conti,

Tópico(s)

Neuroscience and Neural Engineering

Resumo

This aimed at the design and production of engineered 3D scaffold prototypes using a natural polymeric bioink made of chitosan and poly-γ-glutamic acid with a specific focus on 3D-bioprinting process and on 3D framework geometry.Prototypes were produced using a 3D bioprinter exploiting layer-by-layer deposition technology. The 3D scaffold prototypes were fully characterized concerning pore size and size distribution, stability in different experimental conditions, swelling capability, and human dermal fibroblasts viability.Hexagonal framework combined with biopaper allowed stabilizing the 3-layers structure during process manufacturing and during incubation in cell culture conditions. The stability of 3-layers structure was well preserved for 48 h. Crosslinking percentages of 2-layers and 3-layers prototype were 88.2 and 68.39, respectively. The swelling study showed a controlled swelling capability for 2-layers and 3-layers prototype, ∼5%. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good biocompatibility of 3-layers prototype and their suitability for preserving 48 h cell viability in 3D cultures. Moreover, a significant increment of absorbance value was measured after 48 h, demonstrating cell growth.Bioink obtained combining chitosan and poly-γ-glutamic acid represents a good option for 3D bioprinting. A stable 3D structure was realized by layer-by-layer deposition technology; compared with other papers, the present study succeeded in using medical healthcare-grade polymers, no-toxic crosslinker, and solvents according to ICH Topic Q3C (R4).

Referência(s)