Artigo Acesso aberto Revisado por pares

Wool Keratin Hydrolysates for Bioactive Additives Preparation

2021; Multidisciplinary Digital Publishing Institute; Volume: 14; Issue: 16 Linguagem: Inglês

10.3390/ma14164696

ISSN

1996-1944

Autores

Carmen Gaidău, Maria Stanca, Mihaela Niculescu, Cosmin-Andrei Alexe, Marius Becheritu, R. Horoiaş, Cristian Florinel Cioineag, Maria Râpă, Ioana Stănculescu,

Tópico(s)

Insect Utilization and Effects

Resumo

The aim of this paper was to select keratin hydrolysate with bioactive properties by using the enzymatic hydrolysis of wool. Different proteolytic enzymes such as Protamex, Esperase, and Valkerase were used to break keratin molecules in light of bioactive additive preparation. The enzymatic keratin hydrolysates were assessed in terms of the physico-chemical characteristics related to the content of dry substance, total nitrogen, keratin, ash, cysteic sulphur, and cysteine. The influence of enzymatic hydrolysis on molecular weight and amino acid composition was determined by gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses. Antimicrobial activity of keratin hydrolysates was analysed against Fusarium spp., a pathogenic fungus that can decrease the quality of plants. The bioactivity of enzymatic hydrolysates was tested on maize plants and allowed us to select the keratin hydrolysates processed with the Esperase and Valkerase enzymes. The ratio of organised structures of hydrolysate peptides was analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) deconvolution of the amide I band and may explain the difference in their bioactive behaviour. The most important modifications in the ATR spectra of maize leaves in correlation with the experimentally proven performance on maize development by plant length and chlorophyll index quantification were detailed. The potential of enzymatic hydrolysis to design additives with different bioactivity was shown in the case of plant growth stimulation.

Referência(s)
Altmetric
PlumX