Artigo Acesso aberto Revisado por pares

C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers

2021; Nature Portfolio; Volume: 12; Issue: 1 Linguagem: Inglês

10.1038/s41467-021-25560-0

ISSN

2041-1723

Autores

Hitoki Nanaura, Honoka Kawamukai, Ayano Fujiwara, Takeru Uehara, Yuichiro Aiba, Mari Nakanishi, T. Shiota, Masaki Hibino, Pattama Wiriyasermkul, Sotaro Kikuchi, Riko Nagata, Masaya Matsubayashi, Yoichi Shinkai, Tatsuya Niwa, Taro Mannen, Naritaka Morikawa, Naohiko Iguchi, Takao Kiriyama, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Oda T, Noriyuki Kodera, Sachiko Toma-Fukai, Mamoru Sato, Hideki Taguchi, Shushi Nagamori, Osami Shoji, Koichiro Ishimori, Hiroyoshi Matsumura, Kazuma Sugie, Tomohide Saio, Takuya Yoshizawa, Eiichiro Mori,

Tópico(s)

RNA and protein synthesis mechanisms

Resumo

Abstract Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-β2 (Kapβ2) at 1:1 ratio. The nuclear magnetic resonances of Kapβ2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapβ2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72 -related neurodegeneration.

Referência(s)