Artigo Acesso aberto

DACON: a reconfigurable application-centric optical network for disaggregated data center infrastructures [Invited]

2021; Volume: 14; Issue: 1 Linguagem: Inglês

10.1364/jocn.438950

ISSN

1943-0639

Autores

Xiaotao Guo, Xuwei Xue, Fulong Yan, Bitao Pan, Georgios Exarchakos, Nicola Calabretta,

Tópico(s)

Advanced Optical Network Technologies

Resumo

To solve the issues of low resource utilization and performance bottleneck in current server-centric data center networks (DCNs), we propose and experimentally demonstrate a disaggregated application-centric optical network (DACON) for data center infrastructures based on hybrid optical switches. DACON achieves flexible provision and dynamic reconfiguration of hardware nodes exploiting the softwared-define networking (SDN) orchestration plane. A four-node SDN-enabled disaggregated prototype is implemented with a field-programmable-gate-array-based controller of hardware nodes and nanosecond optical switches, performing a minimal node-to-node network latency of 378.6 ns and zero packet loss. Based on the unmodified Linux kernel and two different applications (distributed computing and a Memcached database), the application runtime of the disaggregated prototype is investigated and compared with the server-centric architecture. Experimental results show that the disaggregated prototype performs better with Memcached database applications, achieving a 1.46 × faster runtime than the server-centric network at a memory node access ratio of 0.9. Based on the customized control plane orchestrator and dynamic resource reallocation, the node-to-node latency is reduced by 21% when CPU nodes access memory nodes. The scalability of DACON is then numerically assessed based on experimentally measured parameters. Results show that the intra-rack node-to-node latency is less than 404.8 ns with a 6144-node network and memory node access ratio of 0.9. Finally, the cost and power consumption are also studied and compared with current DCN architectures. Results indicate DACON saves 13.4% of the cost of an interconnect network compared with current disaggregated architecture and consumes up to 31.1% less power with respect to server-centric DCN architectures.

Referência(s)