Existence and multiplicity of nontrivial solutions to the modified Kirchhoff equation without the growth and Ambrosetti–Rabinowitz conditions
2021; University of Szeged; Issue: 83 Linguagem: Inglês
10.14232/ejqtde.2021.1.83
ISSN1417-3875
Autores Tópico(s)Stability and Controllability of Differential Equations
ResumoThe paper focuses on the modified Kirchhoff equation \ b e g i n { a l i g n * } - \ l e f t ( a + b \ i n t _ { \ m a t h b b { R } ^ N } | \ n a b l a u | ^ 2 d x \ r i g h t ) \ D e l t a u - u \ D e l t a ( u ^ 2 ) + V ( x ) u = \ l a m b d a f ( u ) , \ q u a d x \ i n \ m a t h b b { R } ^ N , \ e n d { a l i g n * } w h e r e $ a , b & g t ; 0 $ , $ V ( x ) \ i n C ( \ m a t h b b { R } ^ N , \ m a t h b b { R } ) $ a n d $ \ l a m b d a & l t ; 1 $ i s a p o s i t i v e p a r a m e t e r . W e j u s t a s s u m e t h a t t h e n o n l i n e a r i t y $ f ( t ) $ i s c o n t i n u o u s a n d s u p e r l i n e a r i n a n e i g h b o r h o o d o f $ t = 0 $ and at infinity. By applying the perturbation method and using the cutoff function, we get existence and multiplicity of nontrivial solutions to the revised equation. Then we use the Moser iteration to obtain existence and multiplicity of nontrivial solutions to the above original Kirchhoff equation. Moreover, the nonlinearity f ( t ) may be supercritical.
Referência(s)