Artigo Revisado por pares

Lane Lines Detection under Complex Environment by Fusion of Detection and Prediction Models

2021; SAGE Publishing; Volume: 2676; Issue: 3 Linguagem: Inglês

10.1177/03611981211051334

ISSN

2169-4052

Autores

Malik Haris, Jin Hou, Xiaomin Wang,

Tópico(s)

Remote Sensing and LiDAR Applications

Resumo

The lane lines’ length, width, and direction are very regular, serialized, and structurally associated, which are not easily affected by the environment. To enhance lane detection in a complicated environment, an approach combines visual information with the spatial distribution. Firstly, the grid density of the target detection algorithm YOLOv3 (you only look once V3) is improved from S×S to S×2S, aiming at the particular points in the bird’s-eye view where the lane lines had different densities in the horizontal and vertical directions. The obtained YOLOv3 (S×2S) is more suitable for detecting objects with small and large aspect ratios. It also identifies image features along with balances the detection speed and accuracy. Secondly, based on a bi-directional gated recurrent unit (BGRU), a new lane line prediction model BGRU-Lane (BGRU-L) based on the distribution of lane lines is proposed using the characteristic of lane line serialization and structural correlation. Finally, Dempster-Shafer (D-S) algorithm based on confidence was used to integrate the results of YOLOv3 (S×2S) and BGRU-L to improve the lane line detection ability under complex environments. The experiment was carried out on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset, while Euro Truck Simulator 2 (ETS2) is used as a supplement dataset. After fusing YOLOv3 (S×2S) and BGRU-L models in the D-S model, the detection results have high accuracy in a complex environment by 90.28 mAP. The detection speed is 40.20fps, which enables real-time detection.

Referência(s)