Artigo Acesso aberto Revisado por pares

Fusing sufficient dimension reduction with neural networks

2021; Elsevier BV; Volume: 168; Linguagem: Inglês

10.1016/j.csda.2021.107390

ISSN

1872-7352

Autores

Daniel Kapla, Lukas Fertl, Efstathia Bura,

Tópico(s)

Model Reduction and Neural Networks

Resumo

Neural networks are combined with sufficient dimension reduction methodology in order to remove the limitation of small p and n of the latter. NN-SDR applies when the dependence of the response Y on a set of predictors X is fully captured by the regression function g(B′X), for an unknown function g and low rank parameter B matrix. It is shown that the proposed estimator is on par with competing sufficient dimension reduction methods, such as minimum average variance estimation and conditional variance estimation, in small p and n settings in simulations. Its main advantage is its scalability in regressions with large data, for which the other methods are infeasible.

Referência(s)