Euclid preparation
2021; EDP Sciences; Volume: 657; Linguagem: Inglês
10.1051/0004-6361/202141393
ISSN1432-0746
AutoresH. Bretonnière, M. Huertas-Company, A. Boucaud, François Lanusse, Eric Jullo, E. Merlin, D. Tuccillo, M. Castellano, J. Brinchmann, Christopher J. Conselice, H. Dole, R. Cabanac, H. M. Courtois, F. J. Castander, Pierre‐Alain Duc, P. Fosalba, D. Guinet, Sandor Kruk, Ulrike Kuchner, S. Serrano, É. Soubrié, Antonella Tramacere, L. Wang, A. Amara, N. Auricchio, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, Sylvie Brau-Nogué, M. Brescia, V. Capobianco, C. Carbone, J. Carretero, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, A. Costille, M. Cropper, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A. J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V. H. Haugan, W. A. Holmes, F. Hormuth, P. Hudelot, K. Jahnkę, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, R. Kohley, M. Kümmel, M. Kunz, H. Kurki‐Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovič, F. Marulli, R. Massey, S. Maurogordato, M. Melchior, M. Meneghetti, G. Meylan, M. Moresco, B. Morin, L. Moscardini, E. Munari, R. Nakajima, S. Niemi, C. Padilla Aranda, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, M. Poncet, L. Popa, L. Pozzetti, F. Raison, R. Rébolo, Jason Rhodes, M. Roncarelli, E. Rossetti, R. P. Saglia, P. Schneider, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stančo, Jean‐Luc Starck, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, Yun Wang, N. Welikala, J. Weller, G. Zamorani, J. Zoubian, Marco Baldi, S. Bardelli, S. Camera, R. Farinelli, E. Medinaceli, S. Mei, G. Polenta, E. Romelli, M. Tenti, T. Vassallo, A. Zacchei, E. Zucca, C. Baccigalupi, A. Balaguera-Antolínez, A. Biviano, S. Borgani, E. Bozzo, C. Burigana, A. Cappi, C. S. Carvalho, Santiago Casas, G. Castignani, C. Colodro-Conde, J. Coupon, S. de La Torre, Maximilian Fabricius, M. Farina, P. G. Ferreira, P. Flose-Reimberg, S. Fotopoulou, S. Galeotta, K. Ganga, J. García-Bellido, E. Gaztañaga, G. Gozaliasl, I. Hook, Benjamin Joachimi, V. Kansal, A. Kashlinsky, E. Keihänen, C. C. Kirkpatrick, V. Lindholm, G. Mainetti, D. Maino, R. Maoli, M. Martinelli, N. Martinet, H. J. McCracken, R. B. Metcalf, G. Morgante, N. Morisset, J. W. Nightingale, A. A. Nucita, L. Patrizii, D. Potter, A. Renzi, G. Riccio, Ariel G. Sánchez, D. Sapone, M. Schirmer, M. Schultheis, V. Scottez, E. Sefusatti, R. Teyssier, I. Tutusaus, J. Väliviita, Matteo Viel, L. Whittaker, J. H. Knapen,
Tópico(s)Astronomy and Astrophysical Research
ResumoWe present a machine learning framework to simulate realistic galaxies for the Euclid Survey. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of $0.4\,\rm{deg}^2$ as it will be seen by the Euclid visible imager VIS and show that galaxy structural parameters are recovered with similar accuracy as for pure analytic S\'ersic profiles. Based on these simulations, we estimate that the Euclid Wide Survey will be able to resolve the internal morphological structure of galaxies down to a surface brightness of $22.5\,\rm{mag}\,\rm{arcsec}^{-2}$, and $24.9\,\rm{mag}\,\rm{arcsec}^{-2}$ for the Euclid Deep Survey. This corresponds to approximately $250$ million galaxies at the end of the mission and a $50\,\%$ complete sample for stellar masses above $10^{10.6}\,\rm{M}_\odot$ (resp. $10^{9.6}\,\rm{M}_\odot$) at a redshift $z\sim0.5$ for the wide (resp. deep) survey. The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
Referência(s)