Editorial Produção Nacional Revisado por pares

Nanotechnology in Adjuvants and Vaccine Development: What Should We Know?

2021; Future Medicine; Volume: 16; Issue: 29 Linguagem: Inglês

10.2217/nnm-2021-0360

ISSN

1748-6963

Autores

Bruna Rodrigues Dias Assis, Caroline Dohanik da Silva, Marie Gabriele Santiago, Lucas Antônio Miranda Ferreira, Gisele Assis Castro Goulart,

Tópico(s)

Immunotherapy and Immune Responses

Resumo

NanomedicineVol. 16, No. 29 EditorialNanotechnology in adjuvants and vaccine development: what should we know?Bruna Rodrigues Dias Assis‡, Caroline Dohanik da Silva‡, Marie Gabriele Santiago‡, Lucas Antônio Miranda Ferreira & Gisele Assis Castro GoulartBruna Rodrigues Dias Assis‡ https://orcid.org/0000-0003-4043-3612Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, Caroline Dohanik da Silva‡ https://orcid.org/0000-0002-7919-4666Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, Marie Gabriele Santiago‡ https://orcid.org/0000-0003-2297-1951Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, Lucas Antônio Miranda Ferreira https://orcid.org/0000-0003-2474-5536Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil & Gisele Assis Castro Goulart *Author for correspondence: Tel.: +55 313 409 6993; E-mail Address: gacg@ufmg.brhttps://orcid.org/0000-0003-0292-076XDepartamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, BrazilPublished Online:22 Nov 2021https://doi.org/10.2217/nnm-2021-0360AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: adjuvantsimmunogenicitynanotechnologyvaccinesReferences1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21(2), 83–100 (2021).Crossref, Medline, CAS, Google Scholar2. Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol. Lett. 203(2), 97–105 (2011).Crossref, Medline, CAS, Google Scholar3. Huang CH, Huang CY, Ho HM et al. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J. Immunother. Cancer 8(2), e001022 (2020).Crossref, Medline, Google Scholar4. Pifferi C, Fuentes R, Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat. Rev. Chem. 5, 197–216 (2021).Crossref, CAS, Google Scholar5. Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. Mol. Pharm. 2021, 2867–2888 (2021).Crossref, Google Scholar6. Zhao L, Zhu Z, Ma L, Li Y. O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: based on particle properties and mode of carrying. Int. J. Nanomedicine 15, 2071–2083 (2020).Crossref, Medline, CAS, Google Scholar7. Garçon N, Di Pasquale A. From discovery to licensure, the adjuvant system story. Hum. Vaccin. Immunother. 13(1), 19–33 (2017).Crossref, Medline, Google Scholar8. Polack FP, Thomas SJ, Kitchin N et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383(27), 2603–2615 (2020).Crossref, Medline, CAS, Google Scholar9. Oberli MA, Reichmuth AM, Dorkin JR et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17(3), 1326–1335 (2017).Crossref, Medline, CAS, Google Scholar10. Asadi K, Gholami A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: a review. Int. J. Biol. Macromol. 182, 648–658 (2021).Crossref, Medline, CAS, Google Scholar11. Wiedermann U, Wiltschke C, Jasinska J et al. A virusvirosomal formulated HER-2/neu multi-peptide vaccine induces HER-2/neu-specific immune responses in patients with metastatic breast cancer: a Phase I study. Breast Cancer Res. Treat. 119(3), 673–683 (2010).Crossref, Medline, CAS, Google Scholar12. Hatz C, van der Ploeg R, Beck BR, Frösner G, Hunt M, Herzog C. Successful memory response following a booster dose with a virosome-formulated hepatitis A vaccine delayed up to 11 years. Clin. Vaccine Immunol. 18(5), 885–887 (2011).Crossref, Medline, CAS, Google Scholar13. Coccia M, Collignon C, Hervé C et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines 2(1), 25 (2017).Crossref, Medline, Google Scholar14. Givord C, Welsby I, Detienne S et al. Activation of the endoplasmic reticulum stress sensor IRE1α by the vaccine adjuvant AS03 contributes to its immunostimulatory properties. NPJ Vaccines 3(1), 20 (2018).Crossref, Medline, Google Scholar15. Vesikari T, Kirstein J, Devota Go G et al. Efficacy, immunogenicity, and safety evaluation of an MF59-adjuvanted quadrivalent influenza virus vaccine compared with non-adjuvanted influenza vaccine in children: a multicentre, randomised controlled, observer-blinded, Phase 3 trial. Lancet Respir. Med. 6(5), 345–356 (2018).Crossref, Medline, CAS, Google Scholar16. Shah RR, O'Hagan DT, Amiji MM, Brito LA. The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond.) 9(17), 2671–2681 (2014).Link, CAS, Google Scholar17. Van Der Most RG, Clément F, Willekens J et al. Long-term persistence of cell-mediated and humoral responses to A(H1N1)pdm09 influenza virus vaccines and the role of the AS03 adjuvant system in adults during two randomized controlled trials. Clin. Vaccine Immunol. 24(6), e00553-16 (2017).Medline, Google Scholar18. Calabro S, Tortoli M, Baudner BC et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29(9), 1812–1823 (2011).Crossref, Medline, CAS, Google Scholar19. Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Release 173(1), 148–157 (2014).Crossref, Medline, CAS, Google Scholar20. Gan J, Du G, He C et al. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced cancer vaccination. J. Control. Release 326, 297–309 (2020).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByLow doses of pharmaceutical formulations loaded with UFMG-V4N2 immunogen induce the production of IgG anti-cocaine antibodies and provide evidence of cerebral protection in the preclinical modelJCIS Open, Vol. 9Urgency and necessity of Epstein-Barr virus prophylactic vaccines9 December 2022 | npj Vaccines, Vol. 7, No. 1Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids12 April 2022 | Vaccines, Vol. 10, No. 4 Vol. 16, No. 29 Follow us on social media for the latest updates Metrics Downloaded 83 times History Received 25 September 2021 Accepted 19 October 2021 Published online 22 November 2021 Published in print December 2021 Information© 2021 Future Medicine LtdKeywordsadjuvantsimmunogenicitynanotechnologyvaccinesFinancial & competing interests disclosureThis work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download

Referência(s)
Altmetric
PlumX